Engineering a de Novo Transport Tunnel

Transport of ligands between buried active sites and bulk solvent is a key step in the catalytic cycle of many enzymes. The absence of evolutionary optimized transport tunnels is an important barrier limiting the efficiency of biocatalysts prepared by computational design. Creating a structurally defined and functional “hole” into the protein represents an engineering challenge. Here we describe the computational design and directed evolution of a de novo transport tunnel in haloalkane dehalogenase. Mutants with a blocked native tunnel and newly opened auxiliary tunnel in a distinct part of the structure showed dramatically modified properties. The mutants with blocked tunnels acquired specificity never observed with native family members: up to 32 times increased substrate inhibition and 17 times reduced catalytic rates. Opening of the auxiliary tunnel resulted in specificity and substrate inhibition similar to those of the native enzyme and the most proficient haloalkane dehalogenase reported to date (k...

[1]  Rommie E. Amaro,et al.  Structural elements in IGP synthase exclude water to optimize ammonia transfer. , 2005, Biophysical journal.

[2]  J. Fontecilla-Camps,et al.  Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. , 2010, Nature chemical biology.

[3]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[4]  Yuji Nagata,et al.  Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. , 2009, Nature chemical biology.

[5]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[6]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[7]  Daniel R Roe,et al.  PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. , 2013, Journal of chemical theory and computation.

[8]  Thomas E. Cheatham,et al.  Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters , 2009, The journal of physical chemistry. B.

[9]  T. C. Bruice,et al.  Comparison of formation of reactive conformers for the SN2 displacements by CH3CO2- in water and by Asp124-CO2- in a haloalkane dehalogenase. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Zbynek Prokop,et al.  Haloalkane dehalogenases: Biotechnological applications , 2013, Biotechnology journal.

[11]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[12]  J. Mccammon,et al.  Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. , 2007, The Journal of chemical physics.

[13]  Antonín Pavelka,et al.  CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..

[14]  Jan Brezovsky,et al.  Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. , 2013, Angewandte Chemie.

[15]  Hein J. Wijma,et al.  Computational Library Design for Increasing Haloalkane Dehalogenase Stability , 2014, Chembiochem : a European journal of chemical biology.

[16]  Piotr Cieplak,et al.  R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments , 2011, Nucleic Acids Res..

[17]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[18]  Markus A Lill,et al.  Substrate tunnels in enzymes: Structure–function relationships and computational methodology , 2015, Proteins.

[19]  Andreas W. Götz,et al.  SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations , 2013, Comput. Phys. Commun..

[20]  J. Damborský,et al.  Stepwise enhancement of catalytic performance of haloalkane dehalogenase LinB towards β-hexachlorocyclohexane , 2014, AMB Express.

[21]  F. Gago,et al.  Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics. , 2007, Journal of molecular graphics & modelling.

[22]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[23]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[24]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[25]  J. Mccammon,et al.  Gated binding of ligands to proteins , 1981, Nature.

[26]  Iwaji Iwasaki,et al.  New Colorimetric Determination of Chloride using Mercuric Thiocyanate and Ferric Ion , 1952 .

[27]  Jan Brezovsky,et al.  Substrate specificity of haloalkane dehalogenases. , 2011, The Biochemical journal.

[28]  G. Huisman,et al.  Engineering the third wave of biocatalysis , 2012, Nature.

[29]  J. Newman,et al.  Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. , 2000, Biochemistry.

[30]  F. Raushel,et al.  Carbamoyl-phosphate Synthetase , 2002, The Journal of Biological Chemistry.

[31]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[32]  Zbynek Prokop,et al.  Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. , 2009, Journal of molecular biology.

[33]  B. Luisi,et al.  A Molecular Switch and Proton Wire Synchronize the Active Sites in Thiamine Enzymes , 2004, Science.

[34]  M. Bowman,et al.  Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Damborský,et al.  Differences in crystallization of two LinB variants from Sphingobium japonicum UT26. , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[36]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[37]  J. Damborský,et al.  The effect of a unique halide‐stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 , 2013, The FEBS journal.

[38]  Jay Painter,et al.  TLSMD web server for the generation of multi-group TLS models , 2006 .

[39]  Roman Fedorov,et al.  Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Levi C. T. Pierce,et al.  Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics , 2012, Journal of chemical theory and computation.

[41]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[42]  Michael Krug,et al.  XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS , 2012 .

[43]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[44]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[45]  J Andrew McCammon,et al.  The gates of ion channels and enzymes. , 2010, Trends in biochemical sciences.

[46]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[47]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[48]  Uwe T Bornscheuer,et al.  Strategies for the discovery and engineering of enzymes for biocatalysis. , 2013, Current opinion in chemical biology.

[49]  Thierry Siméon,et al.  Control of Lipase Enantioselectivity by Engineering the Substrate Binding Site and Access Channel , 2009, Chembiochem : a European journal of chemical biology.

[50]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[51]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[52]  J. Damborský,et al.  Gates of Enzymes , 2013, Chemical reviews.

[53]  Anna M. Lieb,et al.  The biological significance of substrate inhibition: A mechanism with diverse functions , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[54]  Manfred T Reetz,et al.  Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes , 2007, Nature Protocols.

[55]  Arieh Warshel,et al.  Solute solvent dynamics and energetics in enzyme catalysis: the S(N)2 reaction of dehalogenase as a general benchmark. , 2004, Journal of the American Chemical Society.

[56]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[57]  Fumio Hirata,et al.  Placevent: An algorithm for prediction of explicit solvent atom distribution—Application to HIV‐1 protease and F‐ATP synthase , 2012, J. Comput. Chem..

[58]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[59]  Lenwood S. Heath,et al.  H++: a server for estimating pKas and adding missing hydrogens to macromolecules , 2005, Nucleic Acids Res..

[60]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[61]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[62]  Eva Sebestova,et al.  Balancing the Stability–Activity Trade‐Off by Fine‐Tuning Dehalogenase Access Tunnels , 2015 .

[63]  Yuji Nagata,et al.  Modification of Activity and Specificity of Haloalkane Dehalogenase from Sphingomonas paucimobilis UT26 by Engineering of Its Entrance Tunnel* , 2003, Journal of Biological Chemistry.

[64]  Antonín Pavelka,et al.  CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[65]  Jan Sykora,et al.  Dynamics and hydration explain failed functional transformation in dehalogenase design. , 2014, Nature chemical biology.

[66]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[67]  J. Mccammon,et al.  Conformation gating as a mechanism for enzyme specificity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[69]  Didier Nurizzo,et al.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments , 2010, Journal of synchrotron radiation.

[70]  Chun-Jung Chen,et al.  Identification and Characterization of Two Amino Acids Critical for the Substrate Inhibition of Human Dehydroepiandrosterone Sulfotransferase (SULT2A1) , 2008, Molecular Pharmacology.

[71]  Artur Gora,et al.  A Single Mutation in a Tunnel to the Active Site Changes the Mechanism and Kinetics of Product Release in Haloalkane Dehalogenase LinB* , 2012, The Journal of Biological Chemistry.

[72]  Gail J. Bartlett,et al.  Analysis of catalytic residues in enzyme active sites. , 2002, Journal of molecular biology.

[73]  J. Trevors,et al.  A colorimetric assay for detecting haloalkane dehalogenase activity , 1998 .

[74]  Donald Hilvert,et al.  Precision is essential for efficient catalysis in an evolved Kemp eliminase , 2013, Nature.

[75]  J Andrew McCammon,et al.  A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[77]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[78]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[79]  F. Raushel,et al.  A combined theoretical and experimental study of the ammonia tunnel in carbamoyl phosphate synthetase. , 2009, Journal of the American Chemical Society.

[80]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[81]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[82]  Xiangshi Tan,et al.  The tunnel of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase regulates delivery of CO to the active site. , 2005, Journal of the American Chemical Society.

[83]  Uwe Mueller,et al.  Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin , 2012, Journal of synchrotron radiation.