BAYESIAN HIERARCHICAL MODELS FOR MULTI-LEVEL REPEATED ORDINAL DATA USING WinBUGS
暂无分享,去创建一个
Ming Tan | Zhenguo Qiu | Peter X K Song | M. Tan | P. X. Song | Z. Qiu | P. Song
[1] A. Agresti. Modelling ordered categorical data: recent advances and future challenges. , 1999, Statistics in medicine.
[2] D. Hedeker,et al. Random effects probit and logistic regression models for three-level data. , 1997, Biometrics.
[3] Adrian E. Raftery,et al. Bayes factors and model uncertainty , 1995 .
[4] J. R. Landis,et al. The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. , 1993, Biometrics.
[5] M Tan,et al. A Bayesian hierarchical model for multi-level repeated ordinal data: analysis of oral practice examinations in a large anaesthesiology training programme. , 1999, Statistics in medicine.
[6] A. Gelfand,et al. Efficient parametrizations for generalized linear mixed models, (with discussion). , 1996 .
[7] Robert Crouchley,et al. A Random-Effects Model for Ordered Categorical Data , 1995 .
[8] Farid Kianifard,et al. Models for Repeated Measurements , 2001, Technometrics.
[9] Mark R. Conaway,et al. A random effects model for binary data , 1990 .
[10] Jiming Jiang. Consistent Estimators in Generalized Linear Mixed Models , 1998 .
[11] G. W. Snedecor. Statistical Methods , 1964 .
[12] Radford M. Neal,et al. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation , 1995, Learning in Graphical Models.
[13] P. Albert,et al. Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.
[14] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[15] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[16] D. Hedeker,et al. A random-effects ordinal regression model for multilevel analysis. , 1994, Biometrics.
[17] J E Tetzlaff,et al. Consistency, inter-rater reliability, and validity of 441 consecutive mock oral examinations in anesthesiology: implications for use as a tool for assessment of residents. , 1999, Anesthesiology.
[18] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[19] Andrew L. Rukhin,et al. Tools for statistical inference , 1991 .
[20] Yinsheng Qu,et al. Analysis of clustered ordinal data with subclusters via a Bayesian hierarchical model , 1998 .
[21] G. Molenberghs,et al. Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .
[22] P. McCullagh,et al. Generalized Linear Models, 2nd Edn. , 1990 .
[23] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[24] G. Tutz,et al. Random effects in ordinal regression models , 1996 .
[25] J. Ware,et al. Random-effects models for longitudinal data. , 1982, Biometrics.
[26] J. H. Schuenemeyer,et al. Generalized Linear Models (2nd ed.) , 1992 .
[27] A. Gelfand,et al. Efficient parametrisations for normal linear mixed models , 1995 .
[28] Robert W. Mee,et al. A mixed-model procedure for analyzing ordered categorical data , 1984 .
[29] S. Zeger,et al. Marginal Regression Models for Clustered Ordinal Measurements , 1996 .