Motives of isogenous K3 surfaces
暂无分享,去创建一个
[1] Makoto Miura,et al. Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties , 2016, Selecta Mathematica.
[2] N. Buskin. Every rational Hodge isometry between two K 3 K3 surfaces is algebraic , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[3] Kuan-Wen Lai,et al. Cremona transformations and derived equivalences of K3 surfaces , 2016, Compositio Mathematica.
[4] A. Efimov. Some remarks on L-equivalence of algebraic varieties , 2017, 1707.08997.
[5] D. Huybrechts. Motives of derived equivalent K3 surfaces , 2017, 1702.03178.
[6] Makoto Miura,et al. The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12 , 2016 .
[7] E. Shinder,et al. Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics , 2016, 1612.07193.
[8] D. Huybrechts. Lectures on K3 Surfaces , 2016 .
[9] Ulrich Schlickewei,et al. The Hodge conjecture for self-products of certain K3 surfaces , 2009, 0907.2503.
[10] D. Huybrechts. The global Torelli theorem: classical, derived, twisted , 2006, math/0609017.
[11] Daniel Huybrechts,et al. Fourier-Mukai transforms in algebraic geometry , 2006 .
[12] Y. Andre. Motifs de dimension finie , 2004 .
[13] D. Huybrechts. GENERALIZED CALABI–YAU STRUCTURES, K3 SURFACES, AND B-FIELDS , 2003, math/0306162.