Efficient numerical simulation of a one-dimensional electrothermal deicer pad
暂无分享,去创建一个
Theo G. Keith | Kenneth J. Witt | R. J. Roelke | W. B. Wright | K. J. De Witt | T. Keith | W. Wright | R. Roelke
[1] Theo G. Keith,et al. Finite difference solutions of heat conduction problems in multi-layered bodies with complex geometries , 1984 .
[2] M. Cross,et al. Accurate solutions of moving boundary problems using the enthalpy method , 1981 .
[3] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[4] R. Kahawita,et al. Cubic spline numerical solution of an ablation problem with convective backface cooling , 1984 .
[5] J. R. Whiteman,et al. A cubic spline technique for the one dimensional heat conduction equation , 1973 .
[6] J. L. Walsh,et al. The theory of splines and their applications , 1969 .
[7] Theo G. Keith,et al. Full two-dimensional transient solutions of electrothermal aircraft blade deicing , 1985 .
[8] Theo G. Keith,et al. Predicted electrothermal deicing of aircraft blades , 1984 .
[9] G. E. Schneider,et al. An Implicit Solution Procedure for Finite Difference Modeling of the Stefan Problem , 1984 .
[10] Ephraim M Sparrow,et al. ANALYSIS OF MULTIDIMENSIONAL CONDUCTION PHASE CHANGE VIA THE ENTHALPY MODEL. , 1975 .
[11] D. F. K. Chao. Numerical simulation of two-dimensional heat transfer in composite bodies with application to de-icing of aircraft components , 1983 .
[12] Gerry E. Schneider,et al. a New Implicit Solution Procedure for Multidimensional Finite-Difference Modeling of the Stefan Problem , 1985 .
[13] Vedat S. Arpaci,et al. Conduction Heat Transfer , 2002 .
[14] Vaughan R Voller,et al. Implicit Finite—difference Solutions of the Enthalpy Formulation of Stefan Problems , 1985 .
[15] S. G. Rubin,et al. A cubic spline approximation for problems in fluid mechanics , 1975 .