Monoclinic–Orthorhombic Phase Transition in ZSM-5 Zeolite: Spontaneous Strain Variation and Thermodynamic Properties

Modeling the ferroelastic properties of the monoclinic–orthorhombic phase transition of ZSM-5 zeolites is very relevant to the understanding of the effects of lattice strain on adsorption and diffusion properties of these microporous materials widely used in catalysis and water treatment. Using very accurate synchrotron X-ray diffraction data, we report here the analysis of spontaneous strain variation across the transition. According to the Landau theory, the behavior of the order parameter reveals the tricritical character of this transition from ferroelastic to paraelastic phase in ZSM-5. Combination of results from Landau analysis with calorimetric data allows the calculation of thermodynamic quantities which are in good agreement with the experimentally derived ones.

[1]  K. Yoza,et al.  Adsorption structures of non-aromatic hydrocarbons on silicalite-1 using the single-crystal X-ray diffraction method. , 2014, Physical chemistry chemical physics : PCCP.

[2]  R. Angel,et al.  EosFit7c and a Fortran module (library) for equation of state calculations , 2014 .

[3]  R. Harder,et al.  Core-shell strain structure of zeolite microcrystals. , 2013, Nature materials.

[4]  G. Cruciani,et al.  The unusual thermal behaviour of boron-ZSM-5 probed by “in situ” time-resolved synchrotron powder diffraction , 2013 .

[5]  K. Nishi,et al.  Location of CO2 on silicalite-1 zeolite using a single-crystal X-ray method , 2013 .

[6]  K. Nishi,et al.  Adsorption process of phenol on silicalite-1 and crystal structure of phenol8.0–silicalite-1 using a single crystal X-ray diffraction method , 2013 .

[7]  R. Bagatin,et al.  The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites , 2012 .

[8]  R. Arletti,et al.  Adsorption mechanism of 1,2-dichloroethane into an organophilic zeolite mordenite: A combined diffractometric and gas chromatographic study , 2012 .

[9]  Koji Nishi,et al.  Determining the structure of a benzene7.2-silicalite-1 zeolite using a single-crystal X-ray method , 2011, Acta crystallographica. Section B, Structural science.

[10]  M. Yano,et al.  Simple method for preparing monoclinic single crystals of zeolite ZSM-5 and analysis of their structure , 2010 .

[11]  R. Angel,et al.  Spontaneous strain variations through the low-temperature displacive phase transition of LiGaSi2O6 clinopyroxene , 2009 .

[12]  V. Ramaswamy,et al.  Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure , 2006 .

[13]  K. Nishi,et al.  Structure of toluene6.4-ZSM-5 and the toluene disproportionation reaction on ZSM-5. , 2005, Acta crystallographica. Section B, Structural science.

[14]  Mark E. Davis,et al.  Heat capacities, third-law entropies and thermodynamic functions of SiO2molecular sieves fromT = 0 K to 400 K , 2002 .

[15]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[16]  Lamberti,et al.  Neutron powder diffraction study of orthorhombic and monoclinic defective silicalite , 2000, Acta crystallographica. Section B, Structural science.

[17]  C. Lamberti,et al.  Structural Characterization of Ti-Silicalite-1: A Synchrotron Radiation X-Ray Powder Diffraction Study , 1999 .

[18]  E. Salje,et al.  Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals , 1998 .

[19]  H. van Koningsveld,et al.  Preparation and structure of crystals of zeolite H-ZSM-5 loaded with p-nitroaniline , 1997 .

[20]  P. Claudy,et al.  Enthalpy change and temperature of the reversible monoclinic-orthorhombic phase transition in MFI type zeolitic materials , 1996 .

[21]  J. C. Jansen,et al.  Single crystal structure analysis of zeolite H-ZSM-5 loaded with naphthalene , 1996 .

[22]  J. C. Jansen,et al.  The location of p‐dichlorobenzene in a single crystal of zeolite H‐ZSM‐5 at high sorbate loading , 1996 .

[23]  J. C. Jansen,et al.  Single-crystal structure analysis and energy minimizations of a MFI-type zeolite at low p-dichlorobenzene sorbate loading , 1996 .

[24]  S. Bordiga,et al.  Orthorhombic and monoclinic silicalites: structure, morphology, vibrational properties and crystal defects. , 1994 .

[25]  M. Sacerdote-peronnet,et al.  Flexibility of the framework structure in highly crystalline silicalite during the reversible monoclinic/orthorhombic solid state polymorphic phase transition , 1993 .

[26]  Andrew Putnis,et al.  An Introduction to Mineral Sciences , 1992 .

[27]  G. Bellussi,et al.  Framework composition of titanium silicalite-1 , 1992 .

[28]  Ekhard K. H. Salje,et al.  Order-parameter saturation and low-temperature extension of Landau theory , 1991 .

[29]  H. Koningsveld High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5 , 1990 .

[30]  J. C. Jansen,et al.  The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5 , 1990 .

[31]  F. Tuinstra,et al.  The location of p-xylene in a single crystal of zeolite H-ZSM-5 with a new, sorbate-induced, orthorhombic framework symmetry , 1989 .

[32]  F. Tuinstra,et al.  On the preparation of a monoclinic (nearly) single crystal of zeolite HZSM-5 , 1989 .

[33]  A. Endoh Calorimetric study of the monoclinic-orthorhombic phase transition in highly siliceous zeolite ZSM-5 , 1988 .

[34]  H. V. Bekkum,et al.  The orthorhombic/monoclinic transition in single crystals of zeolite ZSM-5 , 1987 .

[35]  J. C. Jansen,et al.  On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy , 1987 .

[36]  D. Hay,et al.  Examination of the monoclinic/orthorhombic transition in silicalite using XRD and silicon NMR , 1985 .

[37]  D. Olson,et al.  ZSM-5-type materials. Factors affecting crystal symmetry , 1979 .

[38]  W. M. Meier,et al.  Structure of synthetic zeolite ZSM-5 , 1978, Nature.

[39]  K. Aizu Determination of the State Parameters and Formulation of Spontaneous Strain for Ferroelastics , 1970 .