An Organofunctionalized Polyoxovanadium Cluster as a Molecular Model of Interfacial Pseudocapacitance

To design new materials for efficient and energy-dense electrochemical energy storage, it is critical to understand the interactions between metal oxides and alkali ions. Here, we discuss the solut...

[1]  Timothy R. Cook,et al.  Transport and Electron Transfer Kinetics of Polyoxovanadate-Alkoxide Clusters , 2019, Journal of The Electrochemical Society.

[2]  Gabriela Martínez,et al.  Organic Functionalization of Polyoxovanadate-Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries. , 2018, ChemSusChem.

[3]  Graham N. Newton,et al.  Tuning the electronic structure of organic–inorganic hybrid polyoxometalates: The crucial role of the covalent linkage , 2018, Polyhedron.

[4]  Á. Molina,et al.  Electrochemical and Computational Study of Ion Association in the Electroreduction of PW12O403 , 2017 .

[5]  Á. Molina,et al.  Pulse Voltammetry in Physical Electrochemistry and Electroanalysis: Theory and Applications , 2015 .

[6]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[7]  Weidong Zhou,et al.  Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). , 2013, Journal of the American Chemical Society.

[8]  R. Neumann,et al.  Computational insight into the initial steps of the Mars-van Krevelen mechanism: electron transfer and surface defects in the reduction of polyoxometalates. , 2012, Journal of the American Chemical Society.

[9]  L. Cronin,et al.  From serendipity to design of polyoxometalates at the nanoscale, aesthetic beauty and applications. , 2012, Chemical Society reviews.

[10]  J. Poblet,et al.  Structure, properties and reactivity of polyoxometalates: a theoretical perspective. , 2012, Chemical Society reviews.

[11]  N. Lawrence,et al.  Electrolyte tuning of electrode potentials: the one electron vs. two electron reduction of anthraquinone-2-sulfonate in aqueous media. , 2011, Chemical communications.

[12]  W. Schmickler,et al.  Catalysis in electrochemistry : from fundamental to strategies for fuel cell development , 2011 .

[13]  B. Keita,et al.  Influence of the heteroatom size on the redox potentials of selected polyoxoanions. , 2010, Inorganic chemistry.

[14]  Yunhong Zhou,et al.  Polyimides: promising energy-storage materials. , 2010, Angewandte Chemie.

[15]  K. Eda,et al.  Effect of the central oxoanion size on the voltammetric properties of Keggin-type [XW(12)O(40)](n-) (n = 2-6) complexes. , 2010, Inorganic chemistry.

[16]  Fred Wudl,et al.  Ethoxycarbonyl-based organic electrode for Li-batteries. , 2010, Journal of the American Chemical Society.

[17]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[18]  C. Daniel,et al.  A mixed-valence V(IV)/V(V) alkoxo-polyoxovanadium cluster series [V6O8(OCH3)11]n+/-: exploring the influence of a mu-oxo ligand in a spin frustrated structure. , 2009, Journal of the American Chemical Society.

[19]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[20]  Diane K. Smith,et al.  Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. , 2007, Journal of the American Chemical Society.

[21]  A. Bond,et al.  Systematic approach to the quantitative voltammetric analysis of the FeIII/FeII component of the [alpha2-Fe(OH2)P2W17O61]7-/8- reduction process in buffered and unbuffered aqueous media. , 2005, The journal of physical chemistry. B.

[22]  C. Daniel,et al.  Neutral and cationic V(IV)/V(V) mixed-valence alkoxo-polyoxovanadium clusters [V6O7(OR)12]n+ (R = -CH3, -C2H5): structural, cyclovoltammetric and IR-spectroscopic investigations on mixed valency in a hexanuclear core. , 2005, Journal of the American Chemical Society.

[23]  T. Jones,et al.  Electrochemical ESR and voltammetric studies of lithium ion pairing with electrogenerated 9,10-anthraquinone radical anions either free in acetonitrile solution or covalently bound to multiwalled carbon nanotubes. , 2005, The journal of physical chemistry. B.

[24]  D. Aurbach,et al.  Impedance of a Single Intercalation Particle and of Non-Homogeneous, Multilayered Porous Composite Electrodes for Li-ion Batteries , 2004 .

[25]  W. Schlindwein,et al.  Electrochemical behaviour of first row transition metal substituted Polyoxotungstates: A comparative study in Acetonitrile , 2004 .

[26]  Johann Spandl,et al.  Synthesis and structural characterization of redox-active dodecamethoxoheptaoxohexavanadium clusters. , 2003, Angewandte Chemie.

[27]  J. Paul,et al.  Location of Protons in Anhydrous Keggin Heteropolyacids H3PMo12O40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT Quantum Chemical Calculations , 2002 .

[28]  I. Weinstock,et al.  Role of Cation Size in the Energy of Electron Transfer to 1:1 Polyoxometalate Ion Pairs {(M+)(Xn+VW11O40)}(8-n)- (M = Li, Na, K) , 2000 .

[29]  S. Dong,et al.  Electrochemical behavior of a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O39n– (M = Cr, Mn, Fe, Co, Ni, Cu or Zn) , 1999 .

[30]  E. Steckhan,et al.  Electrochemical Properties of Polyoxometalates as Electrocatalysts. , 1998, Chemical reviews.

[31]  D. Katsoulis A Survey of Applications of Polyoxometalates. , 1998, Chemical reviews.

[32]  N. Gupta,et al.  Hydrogen-Bonding and Protonation Effects in Electrochemistry of Quinones in Aprotic Solvents , 1997 .

[33]  S. Dong,et al.  Study of the electrocatalytic reduction of nitrite with silicotungstic heteropolyanion , 1995 .

[34]  B. Keita,et al.  Solvent Effects on the Redox Potentials of Potassium 12‐Tungstosilicate and 18‐Tungstodiphosphate , 1988 .

[35]  B. Keita,et al.  New aspects of the electrochemistry of heteropolyacids: Part IV. Acidity dependent cyclic voltammetric behaviour of phosphotungstic and silicotungstic heteropolyanions in water and N,N-dimethylformamide , 1987 .

[36]  E. Itabashi Medium Effects on the Redox Properties of 12-Molybdophosphate and 12-Molybdosilicate , 1987 .

[37]  M. T. Pope,et al.  Heteropoly and Isopoly Oxometalates , 1983 .

[38]  M. Hoffman,et al.  ONE-ELECTRON REDUCTION OF 18-MOLYBDODIPHOSPHATE AND 18-TUNGSTODIPHOSPHATE IONS IN AQUEOUS SOLUTION; A PULSE RADIOLYSIS STUDY , 1982 .

[39]  M. T. Pope,et al.  Models for heteropoly blues. Degrees of valence trapping in vanadium(IV)- and molybdenum(V)-substituted Keggin anions , 1975 .

[40]  M. T. Pope,et al.  Heteropoly blues. II. Reduction of 2:18-tungstates , 1967 .

[41]  M. E. Peover,et al.  The influence of ion-association on the polarography of quinones in dimethylformamide , 1963 .

[42]  R. Glicksman Investigation of the Electrochemical Characteristics of Organic Compounds VI . Aromatic Hydroxy, Aromatic Amine, and Aminophenol Compounds , 1961 .