Compared to the conventional strip waveguide microring resonators, subwavelength grating (SWG) waveguide microring resonators have better sensitivity and lower detection limit due to the enhanced photon-analyte interaction. As sensors, especially biosensors, are usually used in absorptive ambient environment, it is very challenging to further improve the detection limit of the SWG ring resonator by simply increasing the sensitivity. The high sensitivity resulted from larger mode-analyte overlap also brings significant absorption loss, which deteriorates the quality factor of the resonator. To explore the potential of the SWG ring resonator, we theoretically and experimentally optimize an ultrasensitive transverse magnetic mode SWG racetrack resonator to obtain maximum quality factor and thus lowest detection limit. A quality factor of 9800 around 1550 nm and sensitivity of 429.7 ± 0.4nm/RIU in water environment are achieved. It corresponds to a detection limit (λ/S·Q) of 3.71 × 10 4 RIU, which marks a reduction of 32.5% compared to the best value reported for SWG microring sensors. © 2017 Optical Society of America OCIS codes: (050.6624) Subwavelength structures; (050.2770) Gratings; (280.4788) Optical sensing and sensors; (230.3120) Integrated optics devices. References and links 1. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011). 2. W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy,” Opt. Lett. 38(19), 3799–3802 (2013). 3. S. Chakravarty, W. C. Lai, Y. Zou, H. A. Drabkin, R. M. Gemmill, G. R. Simon, S. H. Chin, and R. T. Chen, “Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors,” Biosens. Bioelectron. 43, 50–55 (2013). 4. H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015). 5. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). 6. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolicbeam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010). 7. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012). 8. L. Huang, J. Zhou, F. Sun, Z. Fu, and H. Tian, “Optimization of One Dimensional Photonic Crystal EllipticalHole Low-Index Mode Nanobeam Cavities for On-chip Sensing,” J. Lightwave Technol. 34(15), 3496–3502 (2016). Vol. 25, No. 9 | 1 May 2017 | OPTICS EXPRESS 10527 #287549 https://doi.org/10.1364/OE.25.010527 Journal © 2017 Received 7 Mar 2017; revised 12 Apr 2017; accepted 22 Apr 2017; published 27 Apr 2017 9. X. Wang, X. Guan, Q. Huang, J. Zheng, Y. Shi, and D. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38(24), 5405–5408 (2013). 10. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013). 11. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Lasers Appl. Sci. Eng. 64520M (2007). 12. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slotwaveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009). 13. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015). 14. L. Huang, H. Tian, J. Zhou, Q. Liu, P. Zhang, and Y. Ji, “Label-free optical sensor by designing a high-Q photonic crystal ring–slot structure,” Opt. Commun. 335, 73–77 (2015). 15. L. Huang, H. Tian, J. Zhou, and Y. Ji, “Design low crosstalk ring-slot array structure for label-free multiplexed sensing,” Sensors (Basel) 14(9), 15658–15668 (2014). 16. C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009). 17. S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014). 18. K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity,” Opt. Lett. 41(4), 753–756 (2016). 19. J. T. Kindt, M. S. Luchansky, A. J. Qavi, S. H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85(22), 10653–10657 (2013). 20. S. Schmidt, J. Flueckiger, W. X. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing,” Proc. SPIE 9166, 91660M (2014). 21. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Subwavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016). 22. X. C. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide– semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012). 23. Z. Wang, X. Xu, D. Fan, Y. Wang, H. Subbaraman, and R. T. Chen, “Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits,” Sci. Rep. 6(1), 24106 (2016). 24. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15(7), 1843–1851 (1998). 25. N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluidics 4(1–2), 117–127 (2008). 26. L. C. Andreani, “Photonic bands and radiation losses in photonic crystal waveguides,” Phys. Status Solidi, B Basic Res. 234(1), 139–146 (2002). 27. L. Chrostowski and M. Hochberg, Silicon Photonics Design, (Cambridge University, 2015). 28. J. C. Slater, Microwave electronics (Van Nostrand, 1950). 29. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012). 30. L. F. Hoyt, “New table of the refractive index of pure glycerol at 20°C,” Ind. Eng. Chem. 26(3), 329–332 (1934).
[1]
P. Deotare,et al.
Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide
,
2010,
1002.1319.
[2]
Xudong Fan,et al.
Optofluidic Microsystems for Chemical and Biological Analysis.
,
2011,
Nature photonics.
[3]
P. Dumon,et al.
Silicon microring resonators
,
2012
.
[4]
Qian Wang,et al.
Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing
,
2014,
Optics & Photonics - NanoScience + Engineering.
[5]
P. Bienstman,et al.
Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator
,
2009,
IEEE Photonics Journal.
[6]
S. Xiao,et al.
Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications
,
2007,
0707.1194.
[7]
Yuefeng Ji,et al.
Design Low Crosstalk Ring-Slot Array Structure for Label-Free Multiplexed Sensing
,
2014,
Sensors.
[8]
Yaocheng Shi,et al.
High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing.
,
2012,
Optics express.
[9]
Ray T. Chen,et al.
Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors.
,
2015,
Applied physics letters.
[10]
Lucio Claudio Andreani,et al.
Photonic Bands and Radiation Losses in Photonic Crystal Waveguides
,
2002
.
[11]
Ray T. Chen,et al.
Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors.
,
2014,
Applied physics letters.
[12]
Shuren Hu,et al.
Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity.
,
2016,
Optics letters.
[13]
Hongying Zhu,et al.
Overview of novel integrated optical ring resonator bio/chemical sensors
,
2007,
SPIE LASE.
[14]
Shon Schmidt,et al.
Sub-wavelength grating for enhanced ring resonator biosensor.
,
2016,
Optics express.
[15]
Ray T. Chen,et al.
Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics
,
2012
.
[16]
Zheng Wang,et al.
Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits
,
2016,
Scientific Reports.
[17]
Lijun Huang,et al.
Optimization of One Dimensional Photonic Crystal Elliptical-Hole Low-Index Mode Nanobeam Cavities for On-Chip Sensing
,
2016,
Journal of Lightwave Technology.
[18]
Yong-Hee Lee,et al.
One-dimensional parabolic-beam photonic crystal laser.
,
2010,
Optics express.
[19]
Swapnajit Chakravarty,et al.
Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy.
,
2013,
Optics letters.
[20]
Carlos Angulo Barrios,et al.
Optical Slot-Waveguide Based Biochemical Sensors
,
2009,
Sensors.
[21]
Ray T. Chen,et al.
Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors.
,
2013,
Biosensors & bioelectronics.
[22]
Abraham J. Qavi,et al.
Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy.
,
2013,
Analytical chemistry.
[23]
Yuefeng Ji,et al.
Label-free optical sensor by designing a high-Q photonic crystal ring–slot structure
,
2015
.
[24]
Wei Shi,et al.
Silicon photonic micro-disk resonators for label-free biosensing.
,
2013,
Optics express.
[25]
Daoxin Dai,et al.
Suspended ultra-small disk resonator on silicon for optical sensing.
,
2013,
Optics letters.
[26]
Philippe Lalanne,et al.
High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms
,
1998
.