Diffusion in a bistable potential: A systematic WKB treatment

We study the distributionP of a single stochastic variable, the evolution of which is described by a Fokker-Planck equation with a first moment deriving from a bistable potential, in the limit of constant and small diffusion coefficient. A systematic WKB analysis of the lowest eigenmodes of the equivalent Schrödinger-like equation yields the following results: the final approach to equilibrium is governed by the Kramers high-viscosity rate, which is shown to be exact in this limit; for intermediate times, we show that Suzuki's scaling statement does give the correct behavior for the transition between the one-peak and the two-peak structure forP. However, the intermediate time domain also contains a second “ half,” whereP enters the diffusive equilibrium regions, characterized by a time scale of the same order as Suzuki's time.