Modelling the effect of deformation-induced vacancies on segregation and precipitation

[1]  J. Jonas,et al.  Effect of Deformation Vacancies on Precipitation-Related Free Energy Changes in Low Alloy Steels , 1993 .

[2]  J. Jonas,et al.  Influence of boron on nature and distribution of strain induced precipitates in (Ti,Nb) high strength low alloy steels , 1992 .

[3]  J. Jonas,et al.  Strain-induced nucleation of MnS in electrical steels , 1992 .

[4]  J. Jonas,et al.  The non-equilibrium segregation of boron during the recrystalization of Nb-treated HSLA steels , 1991 .

[5]  John J. Jonas,et al.  Prediction of steel flow stresses at high temperatures and strain rates , 1991 .

[6]  J. Jonas,et al.  The grain boundary segregation of boron during isothermal holding , 1989 .

[7]  J. Jonas,et al.  Retardation of Austenite Recrystallization by the Strain Induced Segregation of Boron , 1989 .

[8]  R. Faulkner,et al.  Computer modelling of grain boundary segregation , 1983 .

[9]  H. Oikawa Lattice Diffusion in Iron-A Review , 1982 .

[10]  Y. Estrin,et al.  The effect of vacancy generation on plastic deformation , 1980 .

[11]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[12]  H. Schaefer,et al.  Vacancy formation in iron investigated by positron annihilation in thermal equilibrium , 1977 .

[13]  Rolf Sandström,et al.  A model for hot working occurring by recrystallization , 1974 .

[14]  J. Jonas,et al.  The deformation of armco iron and silicon steel in the vicinitl of the curie temperature , 1974 .

[15]  O. Sherby,et al.  Generation of vacancies in tungsten by rapid-rate deformation at elevated temperature , 1973 .

[16]  A. Argon Internal stresses arising from the interaction of mobile dislocations , 1970 .

[17]  K. C. Russell The role of excess vacancies in precipitation , 1969 .

[18]  T. R. Anthony,et al.  Non-equilibrium segregation of impurities in quenched dilute alloys , 1968 .

[19]  J. H. Westbrook,et al.  Solute induced hardening near grain boundaries in zone refined metals , 1968 .

[20]  William D. Nix,et al.  A model for steady state creep based on the motion of jogged screw dislocations , 1965 .

[21]  D. James,et al.  Grain boundary diffusion of iron, cobalt and nickel in alpha-iron and of iron in gamma-iron , 1965 .

[22]  G. Saada Production de défauts ponctuels par écrouissage dans un métal cubique à faces centrées , 1961 .

[23]  G. Saada Interaction de dislocations rouissage et production de dfauts ponctuels dans les mtaux c.f.c , 1961 .

[24]  D. McLean,et al.  Grain boundaries in metals , 1958 .

[25]  L. Karlsson,et al.  Overview no. 63 Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour , 1988 .

[26]  H. Müssig,et al.  Contribution of pipe diffusion to surface segregation kinetics , 1988 .

[27]  L. Karlsson,et al.  Overview no. 63 Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—III. Computer simulations , 1988 .

[28]  T. Williams,et al.  The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel , 1976 .

[29]  Morris Cohen,et al.  Self-Diffusion during Plastic Deformation , 1970 .

[30]  J. Hirth Theory of Dislocations , 1968 .

[31]  F. Seitz On the generation of vacancies by moving dislocations , 1952 .