Depth map compression via compressed sensing

We propose in this paper a new scheme based on compressed sensing to compress a depth map. We first subsample the entity in the frequency domain to take advantage of its compressibility. We then derive a reconstruction scheme to recover the original map from the subsamples using a non-linear conjugate gradient minimization scheme. We preserve the discontinuities of the depth map at the edges and ensure its smoothness elsewhere by incorporating the Total Variation constraint in the minimization. The results we obtained on various test depth maps show that the proposed method leads to lower error rate at high compression ratio when compared to standard image compression techniques like JPEG and JPEG 2000.

[1]  P.H.N. de With,et al.  Depth-Image Representation Employing Meshes for Intermediate-View Rendering and Coding , 2007, 2007 3DTV Conference.

[2]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[3]  Joachim Weickert,et al.  Optic Flow Goes Stereo: A Variational Method for Estimating Discontinuity-Preserving Dense Disparity Maps , 2005, DAGM-Symposium.

[4]  Hai Tao,et al.  Compression and transmission of depth maps for image-based rendering , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[5]  Michael B. Wakin,et al.  A multiscale framework for Compressive Sensing of video , 2009, 2009 Picture Coding Symposium.

[6]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[7]  Antonin Chambolle,et al.  The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..

[8]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[11]  Nira Dyn,et al.  Image compression by linear splines over adaptive triangulations , 2006, Signal Process..

[12]  Marco Righero,et al.  An introduction to compressive sensing , 2009 .

[13]  Klaus Diepold,et al.  Content Adaptive Mesh Representation of Images Using Binary Space Partitions , 2009, IEEE Transactions on Image Processing.

[14]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[15]  Yo-Sung Ho,et al.  Mesh-Based Depth Coding for 3D Video using Hierarchical Decomposition of Depth Maps , 2007, 2007 IEEE International Conference on Image Processing.

[16]  Paul Hatrack,et al.  Depth map compression for real-time view-based rendering , 2004, Pattern Recognit. Lett..

[17]  Youfu Li,et al.  Context modeling based depth image compression for distributed virtual environment , 2003, Proceedings. 2003 International Conference on Cyberworlds.

[18]  Karen O. Egiazarian,et al.  Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering , 2007, ICIP.

[19]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[20]  Baoxin Li,et al.  Compressive imaging of color images , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.