The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem

[1]  J. Z. Zhang,et al.  Nonmonotone Levenberg–Marquardt Algorithms and Their Convergence Analysis , 1997 .

[2]  L. Qi,et al.  Solving variational inequality problems via smoothing-nonsmooth reformulations , 2001 .

[3]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[4]  H. Yabe,et al.  Factorized quasi-Newton methods for nonlinear least squares problems , 1991, Math. Program..

[5]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[6]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[7]  Naiyang Deng,et al.  A Family of Scaled Factorized Broyden-Like Methods for Nonlinear Least Squares Problems , 1999, SIAM J. Optim..

[8]  G. Isac Complementarity Problems , 1992 .

[9]  Jia Tang,et al.  The quadratic convergence of a smoothing Levenberg-Marquardt method for nonlinear complementarity problem , 2008, Appl. Math. Comput..

[10]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[11]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[12]  Lihua Jiang,et al.  Some research on Levenberg-Marquardt method for the nonlinear equations , 2007, Appl. Math. Comput..

[13]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[14]  James V. Burke,et al.  The Global Linear Convergence of a Noninterior Path-Following Algorithm for Linear Complementarity Problems , 1998, Math. Oper. Res..

[15]  Jia Tang,et al.  A globally convergent Levenberg-Marquardt method for solving nonlinear complementarity problem , 2007, Appl. Math. Comput..

[16]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[17]  Xuanhao Ding Isometries and Toeplitz operators of Bergman space of bounded symmetric domains , 2005 .

[18]  J. Dennis,et al.  Convergence theory for the structured BFGS secant method with an application to nonlinear least squares , 1989 .

[19]  Patrick T. Harker,et al.  A Noninterior Continuation Method for Quadratic and Linear Programming , 1993, SIAM J. Optim..

[20]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[21]  Xuanhao Ding Products of Toeplitz Operators on the Polydisk , 2003 .

[22]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[23]  Defeng Sun,et al.  Improving the convergence of non-interior point algorithms for nonlinear complementarity problems , 2000, Math. Comput..

[24]  Changfeng Ma,et al.  On convergence of a smoothing Broyden-like method for P0-NCP☆ , 2008 .

[25]  Zheng-Hai Huang,et al.  Non-Interior Continuation Method for Solving the Monotone Semidefinite Complementarity Problem , 2003 .

[26]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Variational Inequalities , 1999 .

[27]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[28]  Y. Ye,et al.  On Homotopy-Smoothing Methods for Box-Constrained Variational Inequalities , 1999 .

[29]  Paul Tseng,et al.  Merit functions for semi-definite complemetarity problems , 1998, Math. Program..