New Upper Bounds for the Density of Translative Packings of Three-Dimensional Convex Bodies with Tetrahedral Symmetry
暂无分享,去创建一个
Cristobal Guzman | Frank Vallentin | Fernando Mário de Oliveira Filho | Maria Dostert | F. M. D. O. Filho | F. Vallentin | Cristóbal Guzmán | M. Dostert
[1] Henry Cohn,et al. The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.
[2] Henry Cohn,et al. Some properties of optimal functions for sphere packing in dimensions 8 and 24 , 2016, 1603.04759.
[3] M. Viazovska. The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.
[4] Ferenc Fodor,et al. The Packing Density of the $$n$$n-Dimensional Cross-Polytope , 2015, Discret. Comput. Geom..
[5] F. M. D. O. Filho,et al. Computing Upper Bounds for the Packing Density of Congruent Copies of a Convex Body , 2013, 1308.4893.
[6] Pablo A. Parrilo,et al. Convex algebraic geometry and semidefinite optimization , 2013, ISSAC '13.
[7] Yufei Zhao,et al. SPHERE PACKING BOUNDS VIA SPHERICAL CODES , 2012, 1212.5966.
[8] Rekha R. Thomas,et al. Semidefinite Optimization and Convex Algebraic Geometry , 2012 .
[9] J. Lagarias,et al. Mysteries in packing regular tetrahedra , 2012 .
[10] C. Zong. On the translative packing densities of tetrahedra and cubooctahedra , 2012, 1208.0420.
[11] F. Vallentin,et al. Upper bounds for packings of spheres of several radii , 2012, Forum of Mathematics, Sigma.
[12] F. Stillinger,et al. Erratum: Optimal packings of superballs [Phys. Rev. E 79, 041309 (2009)] , 2011 .
[13] Marjolein Dijkstra,et al. Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra , 2011, 1111.4357.
[14] S. Torquato,et al. Communication: a packing of truncated tetrahedra that nearly fills all of space and its melting properties. , 2011, The Journal of chemical physics.
[15] P. Damasceno,et al. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. , 2011, ACS nano.
[16] M. Dijkstra,et al. Dense regular packings of irregular nonconvex particles. , 2011, Physical review letters.
[17] David J. Pine,et al. Cubic crystals from cubic colloids , 2011 .
[18] John P. D'Angelo,et al. Hermitian analogues of Hilbert's 17-th problem , 2010, 1012.2479.
[19] Veit Elser,et al. Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra , 2010, Discret. Comput. Geom..
[20] Alexander Schrijver,et al. Invariant Semidefinite Programs , 2010, 1007.2905.
[21] Michael Engel,et al. Dense Crystalline Dimer Packings of Regular Tetrahedra , 2010, Discret. Comput. Geom..
[22] S Torquato,et al. Dense packings of polyhedra: Platonic and Archimedean solids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] F. Stillinger,et al. Optimal packings of superballs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Bernd Sturmfels,et al. Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .
[25] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[26] Fabrice Rouillier,et al. Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library , 2005, Reliab. Comput..
[27] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[28] Henry Cohn,et al. New upper bounds on sphere packings I , 2001, math/0110009.
[29] M. Henk,et al. Densest lattice packings of 3-polytopes , 1999, Comput. Geom..
[30] T. Hales. The Kepler conjecture , 1998, math/9811078.
[31] Noam D. Elkies,et al. On the packing densities of superballs and other bodies , 1991 .
[32] James E. Humphreys,et al. Reflection groups and Coxeter groups: Coxeter groups , 1990 .
[33] N. J. A. Sloane,et al. An improvement to the Minkowski-Hiawka bound for packing superballs , 1987 .
[34] C. Dunkl. Cube group invariant spherical harmonics and Krawtchouk polynomials , 1981 .
[35] Richard P. Stanley,et al. Invariants of finite groups and their applications to combinatorics , 1979 .
[36] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[37] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[38] Helmut Groemer. Über die dichteste gitterförmige Lagerung kongruenter Tetraeder , 1962 .
[39] Sabrina Hirsch,et al. Reflection Groups And Coxeter Groups , 2016 .
[40] Günter M. Ziegler,et al. Three Mathematics Competitions , 2011 .
[41] S. Torquato,et al. Dense packings of the Platonic and Archimedean solids , 2009 .
[42] Randall R. Holmes. Linear Representations of Finite Groups , 2008 .
[43] M. Kojima,et al. SDPA-C (SemiDefinite Programming Algorithm - Completion method) User's Manual — Version 6.2.0 , 2004 .
[44] D. Kamenetsky. Symmetry Groups , 2003 .
[45] John P. D'Angelo,et al. Inequalities from Complex Analysis , 2002 .
[46] A. Terras. Fourier Analysis on Finite Groups and Applications: Index , 1999 .
[47] Olga Taussky-Todd. SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .
[48] Bernd Sturmfels,et al. Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.
[49] J. J. Seidel,et al. Cubature Formulae, Polytopes, and Spherical Designs , 1981 .
[50] Douglas J. Hoylman. THE DENSEST LATTICE PACKING OF TETRAHEDRA , 1970 .
[51] H. Minkowski. Dichteste gitterförmige Lagerung kongruenter Körper , 1904 .
[52] Ludwig August Seeber. Recension der "Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber". , 1840 .