Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses

In this paper, we study a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. We show the existence of a bounded positive invariant and attracting set. The possibility of existence and uniqueness of positive equilibrium are considered. The asymptotic behavior of the positive equilibrium and the existence of Hopf-bifurcation of nonconstant periodic solutions surrounding the interior equilibrium are considered. The existence and non-existence of periodic solutions are established under suitable conditions. The permanence conditions are also established. We obtained sufficient conditions to ensure the global stability of the unique positive equilibrium, by using suitable Lyapunov functions, LaSalle invariance principle and Dulac’s criterion. We obtained also sufficient conditions for the global stability of the prey-extinction equilibrium when the unique positive equilibrium is not feasible. Finally, numerical simulations are presented to illustrate the analytical results.

[1]  Xiaoqin Wang,et al.  Chaotic behavior of a Watt-type predator–prey system with impulsive control strategy , 2008 .

[2]  L. Ginzburg,et al.  The nature of predation: prey dependent, ratio dependent or neither? , 2000, Trends in ecology & evolution.

[4]  Qian Wang,et al.  Dynamics of a non-autonomous ratio-dependent predator—prey system , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[6]  Rui Peng,et al.  Positive steady states of the Holling–Tanner prey–predator model with diffusion , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Xueyong Zhou,et al.  GLOBAL STABILITY OF THE VIRAL DYNAMICS WITH CROWLEY-MARTIN FUNCTIONAL RESPONSE , 2011 .

[8]  C. Jost Comparaison qualitative et quantitative de modèles proie-prédateur à des données chronologiques en écologie , 1998 .

[9]  Christian Jost,et al.  About deterministic extinction in ratio-dependent predator-prey models , 1999 .

[10]  Yang Kuang,et al.  Uniqueness of limit cycles in Gause-type models of predator-prey systems , 1988 .

[11]  Chris Cosner,et al.  On the Dynamics of Predator–Prey Models with the Beddington–DeAngelis Functional Response☆ , 2001 .

[12]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[13]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[14]  M. A. Aziz-Alaoui,et al.  Study of a Leslie–Gower-type tritrophic population model , 2002 .

[15]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[16]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[17]  Jitsuro Sugie,et al.  On a predator-prey system of Holling type , 1997 .

[18]  Dongmei Xiao,et al.  Global dynamics of a ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[19]  Ranjit Kumar Upadhyay,et al.  Dynamics of a three species food chain model with Crowley–Martin type functional response , 2009 .

[20]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[21]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[22]  Robert E. Kooij,et al.  A predator-prey model with Ivlev's functional response , 1996 .

[23]  Lin Li,et al.  Permanence and Global Attractivity of Discrete Predator-Prey System with Hassell-Varley Type Functional Response , 2009 .

[24]  Mustapha Jazar,et al.  Oscillatory blow-up in nonlinear second order ODE's: The critical case , 2003 .

[25]  R. K. Upadhyay,et al.  Dynamical complexities in a tri-trophic hybrid food chain model with Holling type II and Crowley-Martin functional responses , 2010 .

[26]  J. Gower,et al.  The properties of a stochastic model for the predator-prey type of interaction between two species , 1960 .

[27]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[28]  Tzy-Wei Hwang,et al.  Global analysis of the predator–prey system with Beddington–DeAngelis functional response , 2003 .

[29]  Kejun Zhuang,et al.  Analysis for a Food Chain Model with Crowley–Martin Functional Response and Time Delay , 2010 .

[30]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[31]  M. Jazar,et al.  A dynamical system approach to the construction of singular solutions of some degenerate elliptic equations , 2003 .

[32]  R Arditi,et al.  Parametric analysis of the ratio-dependent predator–prey model , 2001, Journal of mathematical biology.

[33]  Sze-Bi Hsu,et al.  Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response , 2008 .

[34]  Philip H. Crowley,et al.  Functional Responses and Interference within and between Year Classes of a Dragonfly Population , 1989, Journal of the North American Benthological Society.

[35]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[36]  Jack K. Hale,et al.  Persistence in infinite-dimensional systems , 1989 .

[37]  R. Arditi,et al.  Empirical Evidence of the Role of Heterogeneity in Ratio‐Dependent Consumption , 1993 .

[38]  Dongmei Xiao,et al.  Analyses of Bifurcations and Stability in a Predator-prey System with Holling Type-IV Functional Response , 2004 .

[39]  Yang Kuang,et al.  Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response , 2004 .

[40]  M. A. Aziz-Alaoui,et al.  Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes , 2003, Appl. Math. Lett..

[41]  Tzy-Wei Hwang,et al.  Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response , 2004 .

[42]  Xinyu Song,et al.  Analysis of a stage-structured predator-prey model with Crowley-Martin function , 2011 .