An Optofluidic Concept for a Tunable Micro-iris

A tunable aperture stop based on optofluidic technology, which overcomes a number of limitations of comparable micromechanical alternatives, is presented. Relying on the high optical absorption of aqueous pigment dispersions, we demonstrate that optical stops of high contrast may be defined without the need for any movable parts. The highly flexible design is based on photolithographic patterning of dry film resist and allows control of laminar flow in microfluidic chambers exclusively by capillary forces. The functionality of the developed device is shown in transmission measurements and by application of the iris in a basic imaging setup.

[1]  De-Ying Zhang,et al.  Integrated fluidic adaptive zoom lens. , 2004, Optics letters.

[2]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[3]  Roberto Guerrieri,et al.  Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow , 2006 .

[4]  Qingli Kou,et al.  Collinear dual-color laser emission from a microfluidic dye laser , 2006 .

[5]  Chau Fook Siong,et al.  Optofluidic variable aperture. , 2008, Optics letters.

[6]  P. Mach,et al.  Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels , 2003, IEEE Photonics Technology Letters.

[7]  R. Seemann,et al.  Control of Liquids by Surface Energies , 2007 .

[8]  Benjamin J. Eggleton,et al.  Compact resonant integrated microfluidic refractometer , 2006 .

[9]  H. Zeng,et al.  Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets , 2006 .

[10]  J. Andrew Yeh,et al.  Development and evolution of MOEMS technology in variable optical attenuators , 2008 .

[11]  R. Zengerle,et al.  A unique solution for preventing clogging of flow channels by gas bubbles , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[12]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[13]  Hadi Veladi,et al.  Sliding-blade MEMS iris and variable optical attenuator , 2004 .

[14]  G Medoro,et al.  Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. , 2005, Lab on a chip.

[15]  Jean Berthier,et al.  Microdrops and digital microfluidics , 2008 .

[16]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[17]  P. Vulto,et al.  Phaseguide patterns for advanced liquid handling in Lab-on-a-Chip systems , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[18]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[19]  Kyu-Dong Jung,et al.  A Wafer-Level Micro Mechanical Global Shutter for a Micro Camera , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[20]  Göran Stemme,et al.  A liquid-triggered liquid microvalve for on-chip flow control , 2004 .

[21]  Demetri Psaltis,et al.  Optofluidic evanescent dye laser based on a distributed feedback circular grating , 2009 .

[22]  F. Goldschmidtboeing,et al.  Strategies for void-free liquid filling of micro cavities , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[23]  R. Zengerle,et al.  BUBBLE-FREE PRIMING OF BLIND CAPILLARIES FOR HIGH-ACCURACY CENTRIFUGAL HEMATOCRIT MEASUREMENTS , 2005 .

[24]  Gerald Urban,et al.  A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist , 2009 .

[25]  Mangilal Agarwal,et al.  Polymer-based variable focal length microlens system , 2004 .

[26]  R. J. Schwartz,et al.  Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions , 2009 .