Precision characterization of two-qubit Hamiltonians via entanglement mapping

We demonstrate a method to characterize the general Heisenberg Hamiltonian with non-uniform couplings by mapping the entanglement it generates as a function of time. Identification of the Hamiltonian in this way is possible as the coefficients of each operator control the oscillation frequencies of the entanglement function. The number of measurements required to achieve a given precision in the Hamiltonian parameters is determined and an efficient measurement strategy designed. We derive the relationship between the number of measurements, the resulting precision and the ultimate discrete error probability generated by a systematic mis-characterization. This has important implications when implementing two-qubit gates for fault-tolerant quantum computation.

[1]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[2]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[3]  L. Hollenberg,et al.  05 11 16 8 v 2 2 8 N ov 2 00 5 Scheme for direct measurement of a general two-qubit Hamiltonian , 2022 .

[4]  A. Greentree,et al.  Identifying a two-state Hamiltonian in the presence of decoherence , 2005, quant-ph/0509157.

[5]  Daniel A. Lidar,et al.  Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit , 2005, quant-ph/0506201.

[6]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[7]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[8]  K. B. Whaley,et al.  Generation of quantum logic operations from physical Hamiltonians (13 pages) , 2004, quant-ph/0412169.

[9]  E. Knill Quantum computing with realistically noisy devices , 2004, Nature.

[10]  A. Greentree,et al.  Quantum-dot cellular automata using buried dopants , 2004, cond-mat/0407658.

[11]  M. Mohseni,et al.  Fault-tolerant quantum computation via exchange interactions. , 2004, Physical review letters.

[12]  B. Reichardt Improved ancilla preparation scheme increases fault-tolerant threshold , 2004, quant-ph/0406025.

[13]  A. Kolli,et al.  Experimental Hamiltonian identification for controlled two-level systems , 2003, quant-ph/0311187.

[14]  S. Das Sarma,et al.  Silicon quantum computation based on magnetic dipolar coupling (6 pages) , 2003, cond-mat/0311403.

[15]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2004 .

[16]  Gavin W. Morley,et al.  Nanoscale solid-state quantum computing , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Simon C Benjamin,et al.  Quantum computing with an always-on Heisenberg interaction. , 2002, Physical review letters.

[18]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[19]  F. Bernardeau,et al.  Inflationary models inducing non-Gaussian metric fluctuations , 2002, astro-ph/0209330.

[20]  Mark A. Eriksson,et al.  Practical design and simulation of silicon-based quantum-dot qubits , 2003 .

[21]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[22]  D. Lidar,et al.  Universal quantum logic from Zeeman and anisotropic exchange interactions , 2002, quant-ph/0202135.

[23]  L. Hollenberg,et al.  Nonadiabatic controlled-NOT gate for the Kane solid-state quantum computer , 2001, quant-ph/0108103.

[24]  S. Das Sarma,et al.  Exchange in silicon-based quantum computer architecture. , 2001, Physical review letters.

[25]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[26]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[27]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[28]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[29]  J. M. Sancho,et al.  Measuring the entanglement of bipartite pure states , 1999, quant-ph/9910041.

[30]  Kang L. Wang,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[31]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[32]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[33]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[34]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[35]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[36]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[37]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[38]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[39]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.