Tight Exact and Approximate Algorithmic Results on Token Swapping

Given a graph $G=(V,E)$ with $V=\{1,\ldots,n\}$, we place on every vertex a token $T_1,\ldots,T_n$. A swap is an exchange of tokens on adjacent vertices. We consider the algorithmic question of finding a shortest sequence of swaps such that token $T_i$ is on vertex $i$. We are able to achieve essentially matching upper and lower bounds, for exact algorithms and approximation algorithms. For exact algorithms, we rule out $2^{o(n)}$ algorithm under ETH. This is matched with a simple $2^{O(n\log n)}$ algorithm based on dynamic programming. We give a general $4$-approximation algorithm and show APX-hardness. Thus, there is a small constant $\delta>1$ such that every polynomial time approximation algorithm has approximation factor at least $\delta$. Our results also hold for a generalized version, where tokens and vertices are colored. In this generalized version each token must go to a vertex with the same color.

[1]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[2]  Martin Milanic,et al.  Complexity of independent set reconfigurability problems , 2012, Theor. Comput. Sci..

[3]  D A N I E L R A T N E R A N D M A N F R E D W A R M,et al.  The ( n 2-1 )-Puzzle and Related Relocation Problems , 2008 .

[4]  Richard M. Wilson,et al.  Graph puzzles, homotopy, and the alternating group☆ , 1974 .

[5]  A. Cayley,et al.  LXXVII. Note on the theory of permutations , 1849 .

[6]  Naomi Nishimura,et al.  Reconfiguration over Tree Decompositions , 2014, IPEC.

[7]  Paul S. Bonsma,et al.  Reconfiguring Independent Sets in Claw-Free Graphs , 2014, SWAT.

[8]  Yota Otachi,et al.  Swapping Colored Tokens on Graphs , 2015, WADS.

[9]  Yota Otachi,et al.  Linear-time algorithm for sliding tokens on trees , 2014, Theor. Comput. Sci..

[10]  János Pach,et al.  Reconfigurations in Graphs and Grids , 2006, SIAM J. Discret. Math..

[11]  Takehiro Ito,et al.  Swapping labeled tokens on graphs , 2014, Theor. Comput. Sci..

[12]  Yota Otachi,et al.  Sliding Token on Bipartite Permutation Graphs , 2015, ISAAC.

[13]  Mark Jerrum,et al.  The Complexity of Finding Minimum-Length Generator Sequences , 1985, Theor. Comput. Sci..

[14]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[15]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[16]  Carsten Lund,et al.  Hardness of approximations , 1996 .

[17]  Tillmann Miltzow,et al.  Complexity of Token Swapping and Its Variants , 2016, Algorithmica.

[18]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[19]  Arthur Cayley The Collected Mathematical Papers: Note on the Theory of Permutations , 2009 .

[20]  Katsuhisa Yamanaka,et al.  Swapping Labeled Tokens on Complete Split Graphs (コンピュテーション) , 2015 .

[21]  Jorge Urrutia,et al.  Token Graphs , 2009, Graphs Comb..

[22]  Lenwood S. Heath,et al.  Sorting by Short Swaps , 2003, J. Comput. Biol..

[23]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[24]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[25]  Igor Pak,et al.  Reduced decompositions of permutations in terms of star transpositions, generalized Catalan numbers and k-ARY trees , 1999, Discret. Math..

[26]  Daniel Graf,et al.  How to Sort by Walking on a Tree , 2015, ESA.