Dual-transmitter neurons: functional implications of co-release and co-transmission

[1]  V. Alvarez,et al.  Glutamate and Dopamine Transmission from Midbrain Dopamine Neurons Share Similar Release Properties But Are Differentially Affected by Cocaine , 2014, Journal of Neuroscience.

[2]  Nao Chuhma,et al.  Dopamine Neurons Control Striatal Cholinergic Neurons via Regionally Heterogeneous Dopamine and Glutamate Signaling , 2014, Neuron.

[3]  M. Parent,et al.  Distribution of VGLUT3 in Highly Collateralized Axons from the Rat Dorsal Raphe Nucleus as Revealed by Single-Neuron Reconstructions , 2014, PloS one.

[4]  J. Nabekura,et al.  Dynamic regulation of glycine–GABA co‐transmission at spinal inhibitory synapses by neuronal glutamate transporter , 2013, The Journal of physiology.

[5]  Molly A. Kwiatkowski,et al.  Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia , 2013, Journal of Experimental Biology.

[6]  Stefan Leutgeb,et al.  Neurotransmitter Switching in the Adult Brain Regulates Behavior , 2013, Science.

[7]  J. Hirrlinger,et al.  Mixed miniature postsynaptic currents resulting from co‐release of glycine and GABA recorded from glycinergic neurons in the neonatal respiratory network , 2013, The European journal of neuroscience.

[8]  L. Trussell,et al.  Rapid, Activity-Independent Turnover of Vesicular Transmitter Content at a Mixed Glycine/GABA Synapse , 2013, The Journal of Neuroscience.

[9]  M. T. Shipley,et al.  Olfactory Bulb Short Axon Cell Release of GABA and Dopamine Produces a Temporally Biphasic Inhibition–Excitation Response in External Tufted Cells , 2013, The Journal of Neuroscience.

[10]  G. Westbrook,et al.  Distinct Modes of Dopamine and GABA Release in a Dual Transmitter Neuron , 2013, The Journal of Neuroscience.

[11]  L. Descarries,et al.  Glutamate Corelease Promotes Growth and Survival of Midbrain Dopamine Neurons , 2012, The Journal of Neuroscience.

[12]  R. Gutiérrez,et al.  Co‐release of glutamate and GABA from single, identified mossy fibre giant boutons , 2012, The Journal of physiology.

[13]  J. Poncer,et al.  Presynaptic But Not Postsynaptic GABA Signaling at Unitary Mossy Fiber Synapses , 2012, The Journal of Neuroscience.

[14]  B. Sabatini,et al.  Dopaminergic neurons inhibit striatal output via non-canonical release of GABA , 2012, Nature.

[15]  Kenneth R Tovar,et al.  Amino-Terminal Ligands Prolong NMDA Receptor-Mediated EPSCs , 2012, The Journal of Neuroscience.

[16]  Richard L. Doty,et al.  Olfaction in Parkinson's disease and related disorders , 2012, Neurobiology of Disease.

[17]  G. Sperk,et al.  Glutamate decarboxylase67 is expressed in hippocampal mossy fibers of temporal lobe epilepsy patients , 2012, Hippocampus.

[18]  T. Hnasko,et al.  Neurotransmitter corelease: mechanism and physiological role. , 2012, Annual review of physiology.

[19]  John I. Broussard Co-transmission of dopamine and glutamate , 2012, The Journal of general physiology.

[20]  L. Descarries,et al.  Enhanced Sucrose and Cocaine Self-Administration and Cue-Induced Drug Seeking after Loss of VGLUT2 in Midbrain Dopamine Neurons in Mice , 2011, The Journal of Neuroscience.

[21]  R. Palmiter,et al.  GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. , 2011, European journal of pharmacology.

[22]  M. Luquin,et al.  Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders , 2011, Acta Neuropathologica.

[23]  Anatol C. Kreitzer,et al.  Cholinergic Interneurons Mediate Fast VGluT3-Dependent Glutamatergic Transmission in the Striatum , 2011, PloS one.

[24]  L. Eiden,et al.  VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse , 2011, Annals of the New York Academy of Sciences.

[25]  Seunghoon Lee,et al.  Role of ACh-GABA Cotransmission in Detecting Image Motion and Motion Direction , 2010, Neuron.

[26]  F. Gage,et al.  Adult neurogenesis: integrating theories and separating functions , 2010, Trends in Cognitive Sciences.

[27]  G. Stuber,et al.  Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate , 2010, The Journal of Neuroscience.

[28]  Johann A. Gagnon-Bartsch,et al.  Vesicular Monoamine and Glutamate Transporters Select Distinct Synaptic Vesicle Recycling Pathways , 2010, The Journal of Neuroscience.

[29]  J. Tepper,et al.  Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens , 2010, The Journal of Neuroscience.

[30]  R. Palmiter,et al.  Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo , 2010, Neuron.

[31]  L. Lanfumey,et al.  VGLUT3 (Vesicular Glutamate Transporter Type 3) Contribution to the Regulation of Serotonergic Transmission and Anxiety , 2010, The Journal of Neuroscience.

[32]  K. Kandler,et al.  Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map , 2009, Nature Neuroscience.

[33]  K. Kullander,et al.  VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation , 2009, Proceedings of the National Academy of Sciences.

[34]  L. Descarries,et al.  The dual dopamine‐glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain , 2009, The Journal of comparative neurology.

[35]  W. Y. Choi,et al.  Dopamine neuron glutamate cotransmission: frequency-dependent modulation in the mesoventromedial projection , 2009, Neuroscience.

[36]  Z. Borhegyi,et al.  Fast Synaptic Subcortical Control of Hippocampal Circuits , 2009, Science.

[37]  M. P. Nusbaum,et al.  Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system. , 2009, Journal of neurophysiology.

[38]  T. Furuichi,et al.  Developmentally Regulated Ca2+-Dependent Activator Protein for Secretion 2 (CAPS2) is Involved in BDNF Secretion and is Associated with Autism Susceptibility , 2009, The Cerebellum.

[39]  L. Descarries,et al.  Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion , 2008, Neuroscience.

[40]  J. Lacaille,et al.  Developmental and Target-Dependent Regulation of Vesicular Glutamate Transporter Expression by Dopamine Neurons , 2008, The Journal of Neuroscience.

[41]  L. Overstreet-Wadiche,et al.  Integration of adult generated neurons during epileptogenesis , 2008, Epilepsia.

[42]  K. Tóth,et al.  Is Zinc a Neuromodulator? , 2008, Science Signaling.

[43]  E. Bracci,et al.  Substance P depolarizes striatal projection neurons and facilitates their glutamatergic inputs , 2008, The Journal of physiology.

[44]  G. Westbrook,et al.  Co-transmission of dopamine and GABA in periglomerular cells. , 2008, Journal of neurophysiology.

[45]  B. Giros,et al.  The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone , 2008, Nature Neuroscience.

[46]  C. Tanner,et al.  Association of olfactory dysfunction with risk for future Parkinson's disease , 2008, Annals of neurology.

[47]  R. Edwards The Neurotransmitter Cycle and Quantal Size , 2007, Neuron.

[48]  Masahiko Watanabe,et al.  Evidence against GABA Release from Glutamatergic Mossy Fiber Terminals in the Developing Hippocampus , 2007, The Journal of Neuroscience.

[49]  G. Bellenchi,et al.  The Transporters GlyT2 and VIAAT Cooperate to Determine the Vesicular Glycinergic Phenotype , 2007, The Journal of Neuroscience.

[50]  Geoffrey Burnstock,et al.  Physiology and pathophysiology of purinergic neurotransmission. , 2007, Physiological reviews.

[51]  Sonja M. Wojcik,et al.  A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine , 2006, Neuron.

[52]  G. Westbrook,et al.  Seizures Accelerate Functional Integration of Adult-Generated Granule Cells , 2006, The Journal of Neuroscience.

[53]  R. Edwards,et al.  Functional implications of neurotransmitter co-release: glutamate and GABA share the load. , 2006, Current opinion in pharmacology.

[54]  G. Dugué,et al.  Target-Dependent Use of Coreleased Inhibitory Transmitters at Central Synapses , 2005, The Journal of Neuroscience.

[55]  D. C. Gillespie,et al.  Inhibitory synapses in the developing auditory system are glutamatergic , 2005, Nature Neuroscience.

[56]  H. Uylings,et al.  A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson's disease , 2004, Movement disorders : official journal of the Movement Disorder Society.

[57]  Grégory Dal Bo,et al.  Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine , 2004, Journal of neurochemistry.

[58]  Nao Chuhma,et al.  Dopamine Neurons Mediate a Fast Excitatory Signal via Their Glutamatergic Synapses , 2004, The Journal of Neuroscience.

[59]  R. Gutiérrez,et al.  Plasticity of the GABAergic Phenotype of the “Glutamatergic” Granule Cells of the Rat Dentate Gyrus , 2003, The Journal of Neuroscience.

[60]  R. Gutiérrez,et al.  Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. , 2003, Journal of neurophysiology.

[61]  U. Heinemann,et al.  Kindling induces transient fast inhibition in the dentate gyrus–CA3 projection , 2001, The European journal of neuroscience.

[62]  D. Kullmann,et al.  Monosynaptic GABAergic Signaling from Dentate to CA3 with a Pharmacological and Physiological Profile Typical of Mossy Fiber Synapses , 2001, Neuron.

[63]  E. Marder,et al.  The roles of co-transmission in neural network modulation , 2001, Trends in Neurosciences.

[64]  R. Gutiérrez Seizures induce simultaneous GABAergic and glutamatergic transmission in the dentate gyrus-CA3 system. , 2000, Journal of neurophysiology.

[65]  S. Rayport,et al.  Mesoaccumbens dopamine neuron synapses reconstructed in vitro are glutamatergic , 2000, Neuroscience.

[66]  C. Drake,et al.  Opioid Modulation of Recurrent Excitation in the Hippocampal Dentate Gyrus , 2000, The Journal of Neuroscience.

[67]  J. Vincent,et al.  Dopamine depresses synaptic inputs into the olfactory bulb. , 1999, Journal of neurophysiology.

[68]  K. Osen,et al.  The Vesicular GABA Transporter, VGAT, Localizes to Synaptic Vesicles in Sets of Glycinergic as Well as GABAergic Neurons , 1998, The Journal of Neuroscience.

[69]  P. Jonas,et al.  Corelease of two fast neurotransmitters at a central synapse. , 1998, Science.

[70]  S. Haber,et al.  Dopamine Neurons Make Glutamatergic Synapses In Vitro , 1998, The Journal of Neuroscience.

[71]  B. Giros,et al.  Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases , 1997, FEBS letters.

[72]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[73]  R. S. Sloviter,et al.  Basal expression and induction of glutamate decarboxylase GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus , 1996, The Journal of comparative neurology.

[74]  H. Shinozaki,et al.  Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. , 1996, The Journal of physiology.

[75]  D W Tank,et al.  The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  Mark D. Johnson Synaptic glutamate release by postnatal rat serotonergic neurons in microculture , 1994, Neuron.

[77]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  F. Fonnum,et al.  Uptake of Glycine into Synaptic Vesicles Isolated from Rat Spinal Cord , 1990, Journal of neurochemistry.

[79]  R. Masland,et al.  Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[80]  S. Biasi,et al.  Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[81]  E G Jones,et al.  Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb , 1987, The Journal of comparative neurology.

[82]  C. Cotman,et al.  Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl d-aspartate antagonists , 1986, Neuroscience Letters.

[83]  Y. Jan,et al.  Peptidergic transmission in sympathetic ganglia of the frog. , 1982, The Journal of physiology.

[84]  K. Koketsu,et al.  Cholinergic and inhibitory synapses in a pathway from motor‐axon collaterals to motoneurones , 1954, The Journal of physiology.

[85]  G. Gheusi,et al.  Adult-born neurons in the olfactory bulb: integration and functional consequences. , 2013, Current topics in behavioral neurosciences.

[86]  G. Sperk,et al.  Neuropeptide Y in the dentate gyrus. , 2007, Progress in brain research.

[87]  H. Dale Pharmacology and Nerve-endings (Walter Ernest Dixon Memorial Lecture): (Section of Therapeutics and Pharmacology). , 1935, Proceedings of the Royal Society of Medicine.

[88]  K. Kandler,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience , 2022 .

[89]  S. W. Kuffler,et al.  A peptide as a possible transmitter in sympathetic ganglia of the frog , 2022 .