Soil type mapping using the generalised linear geostatistical model: A case study in a Dutch cultivated peatland
暂无分享,去创建一个
[1] A. Zhu,et al. Updating Conventional Soil Maps through Digital Soil Mapping , 2011 .
[2] P. Burrough,et al. The indicator approach to categorical soil data: I. Theory , 1993 .
[3] A. J. V. Kekem,et al. Uitspoelingsgevoelige gronden op de kaart; werkwijze en resultaten , 2005 .
[4] T. Spek. Het Drentse esdorpenlandschap; een historisch-geografische studie , 2004 .
[5] Budiman Minasny,et al. Bottom-up digital soil mapping. I. Soil layer classes , 2011 .
[6] Pierre Goovaerts,et al. Geostatistical modelling of uncertainty in soil science , 2001 .
[7] P. McCullagh,et al. Generalized Linear Models , 1992 .
[8] Alex B. McBratney,et al. On the Akaike Information Criterion for choosing models for variograms of soil properties. , 1989 .
[9] O. F. Christensen. Monte Carlo Maximum Likelihood in Model-Based Geostatistics , 2004 .
[10] P. Diggle,et al. Model‐based geostatistics , 2007 .
[11] Charlie Chen,et al. Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils , 2011 .
[12] Budiman Minasny,et al. Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation , 2011 .
[13] J. T. Cate,et al. Handleiding bodemgeografisch onderzoek : richtlijnen en voorschriften , 1995 .
[14] J. Clement,et al. Eerste bosstatistiek digitaal; opbouw van een historisch basisbestand , 2003 .
[15] Lars Rosén,et al. On Modelling Discrete Geological Structures as Markov Random Fields , 2002 .
[16] Jennifer A. Hoeting,et al. An Improved Model for Spatially Correlated Binary Responses , 2000 .
[17] C. Dormann. Assessing the validity of autologistic regression , 2007 .
[18] M. Schoeneberger,et al. A spatial model approach for assessing windbreak growth and carbon stocks. , 2011, Journal of environmental quality.
[19] A. Agresti,et al. Multinomial logit random effects models , 2001 .
[20] R. Lark,et al. On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E‐BLUP) with REML , 2006 .
[21] W. Knol,et al. Historisch Grondgebruik Nederland: een landelijke reconstructie van het grondgebruik rond 1900 , 2004 .
[22] G. Hazeu,et al. Landelijk Grondgebruiksbestand Nederland (LGN5); vervaardiging, nauwkeurigheid en gebruik , 2005 .
[23] Patrick Bogaert,et al. Spatial prediction of categorical variables with the Bayesian Maximum Entropy approach: the Ooypolder case study , 2004 .
[24] M. Sambridge,et al. Monte Carlo analysis of inverse problems , 2002 .
[25] Michael Nelson,et al. Digital soil class mapping using legacy soil profile data: a comparison of a genetic algorithm and classification tree approach , 2009 .
[26] D. Hosmer,et al. Applied Logistic Regression , 1991 .
[27] Hadley Wickham,et al. ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .
[28] Juni Palmgren,et al. The Fisher information matrix for log linear models arguing conditionally on observed explanatory variable , 1981 .
[29] T. Oberthür,et al. Mapping soil texture classes using field textuing, particle size distribution and local knowledge by both conventional and geostatisical methods , 1999 .
[30] P.F.M. van Gaans,et al. Continuous classification in soil survey: spatial correlation, confusion and boundaries , 1997 .
[31] Peter J. Diggle,et al. An Introduction to Model-Based Geostatistics , 2003 .
[32] A. Stum,et al. Random Forests Applied as a Soil Spatial Predictive Model in Arid Utah , 2010 .
[33] Mhamed-Ali El-Aroui,et al. Generalized linear spatial models in epidemiology: A case study of zoonotic cutaneous leishmaniasis in Tunisia , 2010 .
[34] D. Hedeker. A mixed‐effects multinomial logistic regression model , 2003, Statistics in medicine.
[35] Marine Lacoste,et al. Extrapolation at regional scale of local soil knowledge using boosted classification trees: A two-step approach , 2012 .
[36] Pramod K. Varshney,et al. Super-resolution land cover mapping using a Markov random field based approach , 2005 .
[37] Gerard B. M. Heuvelink,et al. Sampling for validation of digital soil maps , 2011 .
[38] Tomislav Hengl,et al. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran , 2007 .
[39] G. Heuvelink,et al. Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information , 2008 .
[40] W. Knol,et al. Historisch grondgebruik Nederland: tijdreeksen grondgebruik Noord-Holland van 1850 tot 1980 , 2003 .
[41] Thorsten Behrens,et al. Digital soil mapping using artificial neural networks , 2005 .
[42] R. M. Lark,et al. Geostatistical mapping of geomorphic variables in the presence of trend , 2006 .
[43] S. T. Buckland,et al. An autologistic model for the spatial distribution of wildlife , 1996 .
[44] Misganu Debella-Gilo,et al. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway , 2009 .
[45] Budiman Minasny,et al. Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes , 2007 .
[46] R. Lark,et al. Model‐based analysis using REML for inference from systematically sampled data on soil , 2004 .
[47] P. Diggle,et al. Childhood malaria in the Gambia: a case-study in model-based geostatistics. , 2002 .
[48] Linda Werner Hartman,et al. Bayesian Modelling of Spatial Data Using Markov Random Fields, With Application to Elemental Composition of Forest Soil , 2006 .
[49] Lynn Kuo,et al. A Note on the Estimation of the Multinomial Logit Model With Random Effects , 2001 .
[50] Gerard B. M. Heuvelink,et al. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach , 2009 .