Soil type mapping using the generalised linear geostatistical model: A case study in a Dutch cultivated peatland

We present the generalised linear geostatistical model (GLGM) for soil type mapping and investigate if spatial prediction with this model results in a soil map of greater accuracy than a map obtained using a non-spatial model, i.e. a model that ignores spatial dependence in the soil type variable. The GLGM is central to the framework of model-based geostatistics. We adopted a pragmatic approach in which the five soil types in a cultivated peatland were separately modelled with a binomial logit-linear GLGM. Prediction with soil type-specific GLGMs resulted in five binomial probabilities at each prediction location, which were standardised to multinomial probabilities by selecting the soil type with maximal probability. A soil map was created from the predicted probabilities. In addition, two non-spatial models were used to map soil type. These were the multinomial logit model and the generalised linear model for Bernoulli-distributed data. Validation with independent probability sample data showed that use of a spatial model for digital soil type mapping did not result in more accurate predictions than those with the non-spatial models.

[1]  A. Zhu,et al.  Updating Conventional Soil Maps through Digital Soil Mapping , 2011 .

[2]  P. Burrough,et al.  The indicator approach to categorical soil data: I. Theory , 1993 .

[3]  A. J. V. Kekem,et al.  Uitspoelingsgevoelige gronden op de kaart; werkwijze en resultaten , 2005 .

[4]  T. Spek Het Drentse esdorpenlandschap; een historisch-geografische studie , 2004 .

[5]  Budiman Minasny,et al.  Bottom-up digital soil mapping. I. Soil layer classes , 2011 .

[6]  Pierre Goovaerts,et al.  Geostatistical modelling of uncertainty in soil science , 2001 .

[7]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[8]  Alex B. McBratney,et al.  On the Akaike Information Criterion for choosing models for variograms of soil properties. , 1989 .

[9]  O. F. Christensen Monte Carlo Maximum Likelihood in Model-Based Geostatistics , 2004 .

[10]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[11]  Charlie Chen,et al.  Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils , 2011 .

[12]  Budiman Minasny,et al.  Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation , 2011 .

[13]  J. T. Cate,et al.  Handleiding bodemgeografisch onderzoek : richtlijnen en voorschriften , 1995 .

[14]  J. Clement,et al.  Eerste bosstatistiek digitaal; opbouw van een historisch basisbestand , 2003 .

[15]  Lars Rosén,et al.  On Modelling Discrete Geological Structures as Markov Random Fields , 2002 .

[16]  Jennifer A. Hoeting,et al.  An Improved Model for Spatially Correlated Binary Responses , 2000 .

[17]  C. Dormann Assessing the validity of autologistic regression , 2007 .

[18]  M. Schoeneberger,et al.  A spatial model approach for assessing windbreak growth and carbon stocks. , 2011, Journal of environmental quality.

[19]  A. Agresti,et al.  Multinomial logit random effects models , 2001 .

[20]  R. Lark,et al.  On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E‐BLUP) with REML , 2006 .

[21]  W. Knol,et al.  Historisch Grondgebruik Nederland: een landelijke reconstructie van het grondgebruik rond 1900 , 2004 .

[22]  G. Hazeu,et al.  Landelijk Grondgebruiksbestand Nederland (LGN5); vervaardiging, nauwkeurigheid en gebruik , 2005 .

[23]  Patrick Bogaert,et al.  Spatial prediction of categorical variables with the Bayesian Maximum Entropy approach: the Ooypolder case study , 2004 .

[24]  M. Sambridge,et al.  Monte Carlo analysis of inverse problems , 2002 .

[25]  Michael Nelson,et al.  Digital soil class mapping using legacy soil profile data: a comparison of a genetic algorithm and classification tree approach , 2009 .

[26]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[27]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[28]  Juni Palmgren,et al.  The Fisher information matrix for log linear models arguing conditionally on observed explanatory variable , 1981 .

[29]  T. Oberthür,et al.  Mapping soil texture classes using field textuing, particle size distribution and local knowledge by both conventional and geostatisical methods , 1999 .

[30]  P.F.M. van Gaans,et al.  Continuous classification in soil survey: spatial correlation, confusion and boundaries , 1997 .

[31]  Peter J. Diggle,et al.  An Introduction to Model-Based Geostatistics , 2003 .

[32]  A. Stum,et al.  Random Forests Applied as a Soil Spatial Predictive Model in Arid Utah , 2010 .

[33]  Mhamed-Ali El-Aroui,et al.  Generalized linear spatial models in epidemiology: A case study of zoonotic cutaneous leishmaniasis in Tunisia , 2010 .

[34]  D. Hedeker A mixed‐effects multinomial logistic regression model , 2003, Statistics in medicine.

[35]  Marine Lacoste,et al.  Extrapolation at regional scale of local soil knowledge using boosted classification trees: A two-step approach , 2012 .

[36]  Pramod K. Varshney,et al.  Super-resolution land cover mapping using a Markov random field based approach , 2005 .

[37]  Gerard B. M. Heuvelink,et al.  Sampling for validation of digital soil maps , 2011 .

[38]  Tomislav Hengl,et al.  Methods to interpolate soil categorical variables from profile observations: Lessons from Iran , 2007 .

[39]  G. Heuvelink,et al.  Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information , 2008 .

[40]  W. Knol,et al.  Historisch grondgebruik Nederland: tijdreeksen grondgebruik Noord-Holland van 1850 tot 1980 , 2003 .

[41]  Thorsten Behrens,et al.  Digital soil mapping using artificial neural networks , 2005 .

[42]  R. M. Lark,et al.  Geostatistical mapping of geomorphic variables in the presence of trend , 2006 .

[43]  S. T. Buckland,et al.  An autologistic model for the spatial distribution of wildlife , 1996 .

[44]  Misganu Debella-Gilo,et al.  Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway , 2009 .

[45]  Budiman Minasny,et al.  Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes , 2007 .

[46]  R. Lark,et al.  Model‐based analysis using REML for inference from systematically sampled data on soil , 2004 .

[47]  P. Diggle,et al.  Childhood malaria in the Gambia: a case-study in model-based geostatistics. , 2002 .

[48]  Linda Werner Hartman,et al.  Bayesian Modelling of Spatial Data Using Markov Random Fields, With Application to Elemental Composition of Forest Soil , 2006 .

[49]  Lynn Kuo,et al.  A Note on the Estimation of the Multinomial Logit Model With Random Effects , 2001 .

[50]  Gerard B. M. Heuvelink,et al.  Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach , 2009 .