parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code

We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major in put physics, together with the inclusion of the pre‐main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of prompt ly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other set s with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun’s metallicity Z≃ 0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.

[1]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[2]  A. Dotter,et al.  MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES , 2012, 1206.1820.

[3]  A. Korn,et al.  ATOMIC DIFFUSION AND MIXING IN OLD STARS. III. ANALYSIS OF NGC 6397 STARS UNDER NEW CONSTRAINTS , 2012, 1204.5600.

[4]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[5]  N. Mowlavi,et al.  Stellar mass and age determinations - I. Grids of stellar models from Z = 0.006 to 0.04 and M = 0.5 to 3.5 M⊙ , 2012, 1201.3628.

[6]  Joana M. Oliveira,et al.  The VMC survey - IV. The LMC star formation history and disk geometry from four VMC tiles , 2011, 1110.5852.

[7]  M. Pinsonneault,et al.  Asteroseismology of old open clusters with Kepler: direct estimate of the integrated red giant branch mass-loss in NGC 6791 and 6819 , 2011, 1109.4376.

[8]  N. Panagia,et al.  PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. II. NGC 346 IN THE SMALL MAGELLANIC CLOUD , 2011, 1104.4494.

[9]  J. Christensen-Dalsgaard,et al.  A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology , 2011, 1102.0235.

[10]  A. Pietrinferni,et al.  The magnitude difference between the main sequence turn off and the red giant branch bump in Galactic globular clusters , 2010, 1012.0419.

[11]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[12]  T. Lebzelter,et al.  The pulsation of AGB stars in the Magellanic Cloud clusters NGC 1978 and 419 , 2010, 1006.3121.

[13]  L. Casagrande,et al.  Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion , 2010, 1005.2944.

[14]  A. Weiss,et al.  ON USING THE COLOR–MAGNITUDE DIAGRAM MORPHOLOGY OF M67 TO TEST SOLAR ABUNDANCES , 2010, 1004.3308.

[15]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[16]  P. Morel,et al.  Survival of a convective core in low-mass solar-like pulsator HD 203608 , 2010, 1002.3461.

[17]  M. Nonino,et al.  ON THE ΔVbumpHB PARAMETER IN GLOBULAR CLUSTERS , 2010, 1002.2074.

[18]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[19]  J. Ferguson,et al.  NEW SOLAR COMPOSITION: THE PROBLEM WITH SOLAR MODELS REVISITED , 2009, 0909.2668.

[20]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[21]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[22]  W. Chaplin,et al.  FRESH INSIGHTS ON THE STRUCTURE OF THE SOLAR CORE , 2009, 0905.0651.

[23]  I. Kamp,et al.  The solar photospheric nitrogen abundance - Analysis of atomic transitions with 3D and 1D model atmospheres , 2009, 0903.3406.

[24]  L. Girardi,et al.  Discovery of two distinct red clumps in NGC 419: a rare snapshot of a cluster at the onset of degeneracy , 2009, 0901.0773.

[25]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[26]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[27]  L. Girardi,et al.  Revised Bolometric Corrections and Interstellar Extinction Coefficients for the ACS and WFPC2 Photometric Systems , 2008, 0804.0498.

[28]  P. Bonifacio,et al.  The solar photospheric abundance of hafnium and thorium: Results from CO5BOLD 3D hydrodynamic model atmospheres , 2008, 0803.3585.

[29]  Astronomy Department,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-A , 2008, 0803.1460.

[30]  Gepi,et al.  The solar photospheric abundance of europium Results from CO5BOLD 3D hydrodynamical model atmospheres , 2008, 0803.0863.

[31]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[32]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[33]  S. Nozawa,et al.  The Second Born Corrections to the Electrical and Thermal Conductivities of Dense Matter in the Liquid Metal Phase , 2007, 0708.2967.

[34]  P. Bonifacio,et al.  The solar photospheric abundance of phosphorus : results from CO5BOLD 3D model atmospheres , 2007, 0708.1607.

[35]  J. Ferguson,et al.  A Constraint on Z☉ from Fits of Isochrones to the Color-Magnitude Diagram of M67 , 2007, 0708.1172.

[36]  E. Caffau,et al.  The forbidden 1082 nm line of sulphur: - the photospheric abundance of sulphur in the Sun and 3D effects , 2007, astro-ph/0703423.

[37]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[38]  P. Aguer,et al.  Experimental determination of the O17(p,α)N14 and O17(p,γ)F18 reaction rates , 2007 .

[39]  R. Bohlin HST Stellar Standards with 1% Accuracy in Absolute Flux , 2006, astro-ph/0608715.

[40]  C. Rossi-Alvarez,et al.  S-factor of 14N(p,γ)15O at astrophysical energies⋆ , 2005, nucl-ex/0509005.

[41]  The Isolde Collaboration,et al.  Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances , 2005, Nature.

[42]  P. Stetson,et al.  On the Old Open Clusters M67 and NGC 188: Convective Core Overshooting, Color‐Temperature Relations, Distances, and Ages , 2004 .

[43]  C. Iliadis,et al.  Investigation of the Na-23(p, gamma) Mg-24 and Na-23(p, alpha) Ne-20 reactions via (He-3, d) spectroscopy , 2004 .

[44]  A. Coc,et al.  Compilation and R-matrix analysis of Big Bang nuclear reaction rates , 2004, astro-ph/0407101.

[45]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[46]  H. M. Antia,et al.  Constraining Solar Abundances Using Helioseismology , 2004, astro-ph/0403485.

[47]  J. Richer,et al.  Models for Solar Abundance Stars with Gravitational Settling and Radiative Accelerations: Application to M67 and NGC 188 , 2004, astro-ph/0402544.

[48]  E. Sandquist A high relative precision colour-magnitude diagram of M67 , 2003, astro-ph/0308547.

[49]  H. Leiste,et al.  Stellar He burning of18O:A measurement of low-energy resonances and their astrophysical implications , 2003 .

[50]  P. Mohr,et al.  The $^{15}$N($\bm\alpha$,$\bm\gamma$)$^{19}$F reaction and nucleosynthesis of $^{19}$F , 2002, nucl-ex/0211031.

[51]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[52]  W. H. Fenton,et al.  Heavy-Element Diffusion in Metal-poor Stars , 2001, astro-ph/0108119.

[53]  W. J. Thompson,et al.  Proton-induced Thermonuclear Reaction Rates for A = 20–40 Nuclei , 2001 .

[54]  F. Allard,et al.  The Limiting Effects of Dust in Brown Dwarf Model Atmospheres , 2001, astro-ph/0104256.

[55]  L. Girardi,et al.  Zero-metallicity stars I. Evolution at constant mass , 2001, astro-ph/0102253.

[56]  S. Lucatello,et al.  The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters , 2000, astro-ph/0012457.

[57]  H. Leiste,et al.  Low-energy resonances in 14N(a,?)18F and their astrophysical implications , 2000 .

[58]  J. Richer,et al.  The Evolution of AmFm Stars, Abundance Anomalies, and Turbulent Transport , 2000 .

[59]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[60]  M. Pinsonneault,et al.  How Much Do Helioseismological Inferences Depend on the Assumed Reference Model? , 1999, astro-ph/9909247.

[61]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[62]  F. Rogers,et al.  Consistent Solar Evolution Model Including Diffusion and Radiative Acceleration Effects , 1998 .

[63]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[64]  Sarbani Basu,et al.  Seismic measurement of the depth of the solar convection zone , 1997 .

[65]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[66]  A. Weiss,et al.  Standard and Nonstandard Plasma Neutrino Emission Revisited , 1993, astro-ph/9309014.

[67]  L. Marschall,et al.  CCD photometry of the old open cluster M67 , 1993 .

[68]  A. Loeb,et al.  Element Diffusion in the Solar Interior , 1993, astro-ph/9304005.

[69]  M. Pinsonneault,et al.  Standard solar model , 1992 .

[70]  A. Bressan,et al.  New Developments in Understanding the HR Diagram , 1992 .

[71]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[72]  N. Itoh,et al.  Neutrino Energy Loss in Stellar Interiors , 1985 .

[73]  N. Itoh,et al.  Neutrino-pair bremsstrahlung in dense stars. I: Liquid metal case , 1983 .

[74]  M. S. Cooper,et al.  Screening factors for nuclear reactions. I. General theory , 1973 .

[75]  H. E. DeWitt,et al.  Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .

[76]  A. Cameron,et al.  Abundances of the elements in the solar system , 1973 .

[77]  E. Böhm-Vitense,et al.  Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen , 1958 .