Nonautoregressive Nonlinear Identification of IPMC in Large Deformation Situations Using Generalized Volterra-Based Approach

Ionic polymer metal composites (IPMCs) are special smart materials that are biocompatible and can be used in biomedical and industrial applications. Using previous samples of a system output in a model (autoregressive models) is not feasible in dominant applications of IPMCs especially in biomedical applications. In this paper, we present a generalized Volterra-based model to achieve a nonautoregressive, nonparametric, and nonlinear identification of IPMC. The significant superiority of this approach is its capability to nonautoregressive identification of both linear and nonlinear behaviors of IPMC actuators even in large deformation situations.

[1]  Dibakar Bandopadhya,et al.  Derivation of Transfer Function of an IPMC Actuator Based on Pseudo-Rigid Body Model , 2010 .

[2]  Yantao Shen,et al.  Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films , 2007 .

[3]  Won-jong Kim,et al.  System identification and microposition control of ionic polymer metal composite for three-finger gripper manipulation , 2006 .

[4]  Kinji Asaka,et al.  Distributed Parameter System Modeling , 2014 .

[5]  Nadia Naghavi,et al.  Nonlinear identification of IPMC actuators based on ANFIS–NARX paradigm , 2014 .

[6]  P. Arena,et al.  Design and Control of an IPMC Wormlike Robot , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  S. Graziani,et al.  A sensor-actuator integrated system based on IPMCs [ionic polymer metal composites] , 2004, Proceedings of IEEE Sensors, 2004..

[8]  Maarja Kruusmaa,et al.  A self-oscillating ionic polymer-metal composite bending actuator , 2008 .

[9]  Kyoung Kwan Ahn,et al.  Modeling and control of a self-sensing polymer metal composite actuator , 2014 .

[10]  Xiaobo Tan,et al.  A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators , 2008, IEEE/ASME Transactions on Mechatronics.

[11]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[12]  Woosoon Yim,et al.  A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control , 2014 .

[13]  Sia Nemat-Nassera,et al.  Micromechanics of actuation of ionic polymer-metal composites , 2014 .

[14]  Luigi Fortuna,et al.  Static and Dynamic Characterization of the Temperature and Humidity Influence on IPMC Actuators , 2010, IEEE Transactions on Instrumentation and Measurement.

[15]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[16]  Xiaobo Tan,et al.  Modeling and open-loop control of IPMC actuators under changing ambient temperature , 2012 .

[17]  Xiaobo Tan,et al.  Integrated IPMC/PVDF sensory actuator and its validation in feedback control , 2008 .

[18]  S. Graziani,et al.  A Tactile Sensor for Biomedical Applications Based on IPMCs , 2008, IEEE Sensors Journal.

[19]  Salvatore Graziani,et al.  A Multiphysics Frequency-Dependent Model of an ${\rm IP}^{2}{\rm C}$ Actuator , 2014, IEEE Transactions on Instrumentation and Measurement.

[20]  Mansour Kabganian,et al.  Experimental identification of IPMC actuator parameters through incorporation of linear and nonlinear least squares methods , 2011 .

[21]  Kyoung Kwan Ahn,et al.  Identification of an ionic polymer metal composite actuator employing Preisach type fuzzy NARX model and Particle Swarm Optimization , 2012 .

[22]  Mauricio Barahona,et al.  Detection of nonlinear dynamics in short, noisy time series , 1996, Nature.

[23]  D. Q. Truong,et al.  Design and verification of a non-linear black-box model for ionic polymer metal composite actuators , 2011 .

[24]  Kyoung Kwan Ahn,et al.  Analysis and experiment on a self-sensing ionic polymer–metal composite actuator , 2014 .

[25]  Ruili Dong,et al.  A model based predictive compensation for ionic polymer metal composite sensors for displacement measurement , 2015 .

[26]  Jalil Rezaeepazhand,et al.  Analytical dynamic modeling of a cantilever IPMC actuator based on a distributed electrical circuit , 2013 .

[27]  E. Hämmerle,et al.  A nonlinear scalable model for designing ionic polymer-metal composite actuator systems , 2009, International Conference on Smart Materials and Nanotechnology in Engineering.

[28]  Won-jong Kim,et al.  Microscale position control of an electroactive polymer using an anti-windup scheme , 2006 .

[29]  Sung-Soo Kang,et al.  Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer-metal composite beams , 2005 .

[30]  C. Tsui,et al.  Numerical simulation of dynamic electro-mechanical response of ionic polymer-metal composites , 2011 .

[31]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[32]  K. Kim,et al.  An explicit physics-based model of ionic polymer-metal composite actuators , 2011 .

[33]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[34]  Barbar J. Akle,et al.  Electromechanical transduction in multilayer ionic transducers , 2004 .

[35]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[36]  Sia Nemat-Nasser,et al.  Electromechanical response of ionic polymer-metal composites , 2000 .

[37]  Min Yu,et al.  Modeling of IPMC Cantilever’s Displacements and Blocking Forces , 2015 .

[38]  M. Kruusmaa,et al.  A Distributed Model of Ionomeric Polymer Metal Composite , 2009 .

[39]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[40]  Yutaka Toi,et al.  Finite element modeling of electrochemical-poroelastic behaviors of conducting polymers , 2007 .

[41]  S. Graziani,et al.  A Resonant Vibrating Tactile Probe for Biomedical Applications Based on IPMC , 2010, IEEE Transactions on Instrumentation and Measurement.

[42]  N. Naghavi,et al.  Non-uniform deformation and curvature identification of ionic polymer metal composite actuators , 2015 .

[43]  K. K. Leang,et al.  Integrated Sensing for IPMC Actuators Using Strain Gages for Underwater Applications , 2012, IEEE/ASME Transactions on Mechatronics.

[44]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[45]  Won-jong Kim,et al.  Aquatic Ionic-Polymer-Metal-Composite Insectile Robot With Multi-DOF Legs , 2013, IEEE/ASME Transactions on Mechatronics.

[46]  B Lopes,et al.  Electromechanical Characterization of Non-Uniform Charged Ionic Polymer-Metal Composites (IPMC) Devices , 2008 .

[47]  Nadia Naghavi,et al.  Restraining IPMC Back Relaxation in Large Bending Displacements: Applying Non-Feedback Local Gaussian Disturbance by Patterned Electrodes , 2016, IEEE Transactions on Electron Devices.

[48]  Xiaobo Tan,et al.  FEEDBACK CONTROL OF A COUPLED IPMC (IONIC POLYMER-METAL COMPOSITE) SENSOR- ACTUATOR , 2009 .

[49]  Woosoon Yim,et al.  Open-loop control of Ionic Polymer Metal Composite (IPMC) based underwater actuator using a network of neural oscillator , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.