A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension

Finite-volume methods for problems involving second-order operators with full diffusion matrix can be used thanks to the definition of a discrete gradient for piecewise constant functions on unstructured meshes satisfying an orthogonality condition. This discrete gradient is shown to satisfy a strong convergence property for the interpolation of regular functions, and a weak one for functions bounded in a discrete H 1 -norm. To highlight the importance of both properties, the convergence of the finite-volume scheme for a homogeneous Dirichlet problem with full diffusion matrix is proven, and an error estimate is provided. Numerical tests show the actual accuracy of the method.

[1]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[2]  Mario Putti,et al.  Finite Element Approximation of the Diffusion Operator on Tetrahedra , 1998, SIAM J. Sci. Comput..

[3]  R. Eymard,et al.  A Finite Volume Scheme for the Transport of Radionucleides in Porous Media , 2004 .

[4]  R. Eymard,et al.  Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .

[5]  Ilya D. Mishev,et al.  FINITE VOLUME METHODS ON VORONOI MESHES , 1998 .

[6]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[7]  Ian Turner,et al.  A SECOND ORDER CONTROL-VOLUME FINITE-ELEMENT LEAST-SQUARES STRATEGY FOR SIMULATING DIFFUSION IN STRONGLY ANISOTROPIC MEDIA 1) , 2005 .

[8]  JayanthaPasdunkoraleA. A SECOND ORDER CONTROL-VOLUME FINITE-ELEMENT LEAST-SQUARES STRATEGY FOR SIMULATING DIFFUSION IN STRONGLY ANISOTROPIC MEDIA , 2005 .

[9]  Ian Turner,et al.  A second order finite volume technique for simulating transport in anisotropic media , 2003 .

[10]  Bernard Lapeyre,et al.  Introduction to Stochastic Calculus Applied to Finance , 2007 .

[11]  Peter A. Forsyth,et al.  A Control Volume Finite Element Approach to NAPL Groundwater Contamination , 1991, SIAM J. Sci. Comput..

[12]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[13]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[14]  E. Bertolazzi,et al.  A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .

[15]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[16]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[17]  R. A. Nicolaides,et al.  Covolume techniques for anisotropic media , 1992 .

[18]  Lutz Angermann A finite element method for the numerical solution of convection-dominated anisotropic diffusion equations , 2000, Numerische Mathematik.

[19]  Raphaèle Herbin,et al.  Finite volume approximation of a class of variational inequalities , 2001 .

[20]  Said Raghay,et al.  Finite volumes for complex applications IV , 2005 .

[21]  Thierry Gallouët,et al.  Error Estimates on the Approximate Finite Volume Solution of Convection Diffusion Equations with General Boundary Conditions , 2000, SIAM J. Numer. Anal..

[22]  Raphaèle Herbin,et al.  A finite volume for anisotropic diffusion problems , 2004 .

[23]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[24]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .

[25]  Thierry Gallouët,et al.  Convergence of finite volume schemes for semilinear convection diffusion equations , 1999, Numerische Mathematik.

[26]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[27]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[28]  Martin Vohralík,et al.  Combined Nonconforming/Mixed-hybrid Finite Element-Finite Volume Scheme for Degenerate Parabolic Problems , 2004 .