Pulse position modulation for FSO systems: Capacity and channel coding

For terrestrial free space optical (FSO) systems, we investigate the use of pulse position modulation (PPM) which has the interesting property of being average-energy efficient. We first discuss the upper bound on the information transmission rate for a Gaussian channel. Next, we consider the more practical aspect of channel coding and look for a suitable solution for the case of Q-ary PPM. Instead of using a non-binary channel code, we suggest to use a simple binary convolutional code and to perform iterative soft demodulation (demapping) and channel decoding at the receiver. We show that the proposed scheme is quite efficient against demodulation errors due to the receiver noise. Moreover, we propose a simple soft-demapping method of low complexity for the general case of Q-ary PPM. The receiver complexity remains then reasonable in view of implementation in a terrestrial FSO system.

[1]  Dariush Divsalar,et al.  PPM Performance for Reed-Solomon Decoding Over an Optical-RF Relay Link , 1984, IEEE Trans. Commun..

[2]  G. E. Atkin,et al.  Performance analysis of coded optical PPM system using direct and coherent detection , 1990 .

[3]  Yong Ai,et al.  Iterative Coded Modulation With Code Rate Flexibility for Optical Space Communications , 2009, IEEE Photonics Technology Letters.

[4]  Salah Bourennane,et al.  Channel coding and time-diversity for optical wireless links. , 2009, Optics express.

[6]  Eric J. Korevaar,et al.  Understanding the performance of free-space optics [Invited] , 2003 .

[7]  Yong Ai,et al.  A Coded Modulation Scheme for Deep-Space Optical Communications , 2008, IEEE Photonics Technology Letters.

[8]  Sherman Karp,et al.  Optical Communications , 1976 .

[9]  Guillermo E. Atkin,et al.  Orthogonal convolutional coding for the PPM optical channel, errata , 1989 .

[10]  Jeffrey H. Shapiro,et al.  Capacity of wireless optical communications , 2003, IEEE J. Sel. Areas Commun..

[11]  Fang Xu,et al.  Performance of coded time-diversity free-space optical links , 2008, 2008 24th Biennial Symposium on Communications.

[12]  Jon Hamkins Performance of Binary Turbo-Coded 256-ary Pulse-Position Modulation , 1999 .

[13]  Zabih Ghassemlooy,et al.  Optical Communications Comparison of hard-decision and soft-decision channel coded M-ary PPM performance over free space optical links , 2009, Eur. Trans. Telecommun..

[14]  J. R. Clark Optical communications , 1977, Proceedings of the IEEE.

[15]  Jon Hamkins,et al.  Coded Modulation for the Deep-Space Optical Channel: Serially Concatenated Pulse-Position Modulation , 2005 .

[16]  B. Moision,et al.  Iterative Coded Pulse-Position-Modulation for Deep-Space Optical Communications , 2007, 2007 IEEE Information Theory Workshop.

[17]  Steve Hranilovic,et al.  Wireless optical communication systems , 2004 .

[18]  V.W.S. Chan,et al.  Free-Space Optical Communications , 2006, Journal of Lightwave Technology.

[19]  Maïté Brandt-Pearce,et al.  Optical repetition MIMO transmission with multipulse PPM , 2005, IEEE Journal on Selected Areas in Communications.

[20]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[21]  Enrico Forestieri,et al.  Performance of convolutional codes in a direct-detection optical PPM channel , 1989, IEEE Trans. Commun..

[22]  Jon Hamkins,et al.  Deep-Space Optical Communications Downlink Budget: Modulation and Coding , 2003 .

[23]  Jon Hamkins,et al.  Optimizations of a Hardware Decoder for Deep-Space Optical Communications , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[25]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.