The role of transition metal interfaces on the electronic transport in lithium–air batteries

Abstract Low electronic conduction is expected to be a main limiting factor in the performance of reversible lithium–air, Li–O2, batteries. Here, we apply density functional theory and non-equilibrium Green's function calculations to determine the electronic transport through lithium peroxide, Li2O2, formed at the cathode during battery discharge. We find the transport to depend on the orientation and lattice matching of the insulator–metal interface in the presence of Au and Pt catalysts. Bulk lithium vacancies are found to be available and mobile under battery charging conditions, and found to pin the Fermi level at the top of the anti bonding peroxide π*(2px) and π*(2py) levels in the Li2O2 valence band. Under an applied bias, this can result in a reduced transmission, since the anti bonding σ*(2pz) level in the Li2O2 conduction band is found to couple strongly to the metal substrate and create localized interface states with poor coupling to the Li2O2 bulk states. These observations provide a possible explanation for the higher overpotential observed for charging than discharge.

[1]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[2]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[3]  M. Armand,et al.  Building better batteries , 2008, Nature.

[4]  N. Seriani Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles , 2009, Nanotechnology.

[5]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[6]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[7]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[8]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[9]  K. Thygesen,et al.  Conductance of sidewall-functionalized carbon nanotubes: universal dependence on adsorption sites. , 2008, Physical review letters.

[10]  D. J. Mowbray,et al.  Influence of functional groups on charge transport in molecular junctions. , 2008, The Journal of chemical physics.

[11]  K. Neyerlin,et al.  Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media , 2010 .

[12]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[13]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[14]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[15]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[16]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[17]  Rajendra Kumar Jenamani,et al.  Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi , 2007 .

[18]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[19]  Pedersen,et al.  Determination of the of rate cross slip of screw dislocations , 2000, Physical review letters.

[20]  M. Shikano,et al.  Gold model anodes for Li-ion batteries: Single crystalline systems studied by in situ X-ray diffraction , 2008 .

[21]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[22]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[23]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[24]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[25]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[26]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[27]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[28]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[29]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[30]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[31]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[32]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[33]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[34]  M. W. Chase NIST–JANAF Thermochemical Tables for the Bromine Oxides , 1996 .

[35]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[36]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  K. Jacobsen,et al.  Four-atom period in the conductance of monatomic Al wires. , 2003, Physical review letters.

[38]  Jens K. Nørskov,et al.  Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction , 2009 .

[39]  Ye Xu,et al.  O2 reduction by lithium on Au(111) and Pt(111). , 2010, The Journal of chemical physics.

[40]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[41]  P. Bruce,et al.  Effect of Catalyst on the Performance of Rechargeable Lithium/Air Batteries. , 2007 .

[42]  K. Jacobsen,et al.  Conduction mechanism in a molecular hydrogen contact. , 2004, Physical review letters.

[43]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[44]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[45]  Giovanni Ciccotti,et al.  Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations , 1998 .

[46]  Yongyao Xia,et al.  The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery , 2009 .

[47]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[48]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[49]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[50]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[51]  Molecular transport calculations with Wannier functions , 2005, cond-mat/0501238.

[52]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.