Hydrometeor classification from polarimetric radar measurements: a clustering approach

Abstract. A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt) that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study). Seven hydrometeor classes (nopt = 7) have been found in the data set, and they have been identified as light rain (LR), rain (RN), heavy rain (HR), melting snow (MS), ice crystals/small aggregates (CR), aggregates (AG), and rimed-ice particles (RI).

[1]  V. Chandrasekar,et al.  A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset , 2013 .

[2]  A. Ryzhkov,et al.  Estimation of Rainfall Based on the Results of Polarimetric Echo Classification , 2007 .

[3]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[4]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[5]  Dmitri Moisseev,et al.  Recent advances in classification of observations from dual polarization weather radars , 2013 .

[6]  V. Chandrasekar,et al.  Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification , 2000 .

[7]  V. Chandrasekar,et al.  Polarimetric Radar Observations in the Ice Region of Precipitating Clouds at C-Band and X-Band Radar Frequencies , 2013 .

[8]  Mikhail F. Kanevski,et al.  Memory-Based Cluster Sampling for Remote Sensing Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Alexander V. Ryzhkov,et al.  THE JOINT POLARIZATION EXPERIMENT Polarimetric Rainfall Measurements and Hydrometeor Classification , 2005 .

[10]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[11]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  S. Anquetin,et al.  Geostatistical Analysis of Orographic Rainbands , 2001 .

[13]  V. Chandrasekar,et al.  A Dual-Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation , 2014 .

[14]  B. Boudevillain,et al.  The Cévennes‐Vivarais Mediterranean Hydrometeorological Observatory database , 2011 .

[15]  Stephen J. Frasier,et al.  A New Fuzzy Logic Hydrometeor Classification Scheme Applied to the French X-, C-, and S-Band Polarimetric Radars , 2013 .

[16]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[17]  Kyoko Ikeda,et al.  Freezing-Level Estimation with Polarimetric Radar , 2004 .

[18]  Alexis Berne,et al.  A sun-tracking method to improve the pointing accuracy of weather radar , 2011 .

[19]  A. Berne,et al.  Stochastic Simulation of Intermittent DSD Fields in Time , 2012 .

[20]  Guifu Zhang,et al.  Drop Size Distribution Retrieval with Polarimetric Radar: Model and Application , 2004 .

[21]  V. Chandrasekar,et al.  Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar , 1996, IEEE Trans. Geosci. Remote. Sens..

[22]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[23]  Tobias Otto,et al.  Estimation of Specific Differential Phase and Differential Backscatter Phase From Polarimetric Weather Radar Measurements of Rain , 2011, IEEE Geoscience and Remote Sensing Letters.

[24]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .

[25]  Devis Tuia,et al.  Hydrometeor classification from two-dimensional video disdrometer data , 2014 .

[26]  Jacques Testud,et al.  The Rain Profiling Algorithm Applied to Polarimetric Weather Radar , 2000 .

[27]  Marc Schneebeli,et al.  An Extended Kalman Filter Framework for Polarimetric X-Band Weather Radar Data Processing , 2012 .

[28]  M. Lehning,et al.  Seasonal small‐scale spatial variability in alpine snowfall and snow accumulation , 2013 .

[29]  Frank S. Marzano,et al.  Supervised Fuzzy-Logic Classification of Hydrometeors Using C-Band Weather Radars , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[31]  Michael Lehning,et al.  High-Resolution Vertical Profiles of X-Band Polarimetric Radar Observables during Snowfall in the Swiss Alps , 2013 .

[32]  F. Marzano,et al.  HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean , 2013 .

[33]  Sergey Y. Matrosov,et al.  Radar reflectivity in snowfall , 1992, IEEE Trans. Geosci. Remote. Sens..

[34]  T. Delft,et al.  Rainfall rate retrieval with IDRA, the polarimetric X-band radar at Cabauw, Netherlands , 2012 .

[35]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[36]  J. Gourley,et al.  Multifrequency Radar Observations Collected in Southern France during HyMeX-SOP1 , 2015 .

[37]  Witold F. Krajewski,et al.  Two-dimensional video disdrometer: A description , 2002 .

[38]  Guifu Zhang,et al.  Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms , 2009 .

[39]  Ferenc Kovács,et al.  Cluster validity measurement for arbitrary shaped clusters , 2006 .

[40]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[41]  Raquel Evaristo Relationship of Graupel Shape to Differential Reflectivity: Theory and Observations , 2013 .

[42]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[43]  Marc Schneebeli,et al.  Accuracy of Phase-Based Algorithms for the Estimation of the Specific Differential Phase Shift Using Simulated Polarimetric Weather Radar Data , 2014, IEEE Geoscience and Remote Sensing Letters.

[44]  Jussi Leinonen,et al.  Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid Models , 2011 .

[45]  M. Schneebeli,et al.  Orographic effects on snow deposition patterns in mountainous terrain , 2014 .

[46]  HalkidiMaria,et al.  Cluster validity methods , 2002 .

[47]  Devis Tuia,et al.  Hydrometor classification from 2 dimensional videodisdrometer data , 2014 .

[48]  Martin Hagen,et al.  Polarimetric radar studies of atmospheric ice particles , 1994, IEEE Trans. Geosci. Remote. Sens..

[49]  T. Keenan,et al.  Hydrometeor classification with a C-band polarimetric radar , 2003 .

[50]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[51]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[52]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[53]  Witold F. Krajewski,et al.  Radar for hydrology: unfulfilled promise or unrecognized potential? , 2013 .

[54]  David Hudak,et al.  A Methodology to Derive Radar Reflectivity–Liquid Equivalent Snow Rate Relations Using C-Band Radar and a 2D Video Disdrometer , 2010 .

[55]  Marc Schneebeli,et al.  Improved Estimation of the Specific Differential Phase Shift Using a Compilation of Kalman Filter Ensembles , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[56]  S. Rutledge,et al.  Using CASA IP1 to Diagnose Kinematic and Microphysical Interactions in a Convective Storm , 2010 .

[57]  Jonathan J. Gourley,et al.  A Fuzzy Logic Algorithm for the Separation of Precipitating from Nonprecipitating Echoes Using Polarimetric Radar Observations , 2007 .

[58]  Joël Jaffrain High resolution vertical profiles of polarimetric X-band weather radar observables during snowfall in the Swiss Alps , 2011 .

[59]  Frank S. Marzano,et al.  Iterative Bayesian Retrieval of Hydrometeor Content From X-Band Polarimetric Weather Radar , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[60]  A. R. Jameson Microphysical Interpretation of Multi-Parameter Radar Measurements in Rain. Part II: Estimation of Raindrop Distribution Parameters by Combined Dual-Wavelength and Polarization Measurements , 1983 .

[61]  Brenda Dolan,et al.  A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars , 2009 .