The Herman–Kluk approximation: Derivation and semiclassical corrections

[1]  F. Grossmann,et al.  Time‐Dependent Semiclassical Mechanics , 2007 .

[2]  E. Pollak,et al.  Coherent classical-path description of deep tunneling. , 2004, Physical review letters.

[3]  E. Pollak,et al.  Thawed semiclassical IVR propagators , 2004 .

[4]  Michael Thoss,et al.  Semiclassical description of molecular dynamics based on initial-value representation methods. , 2004, Annual review of physical chemistry.

[5]  F. Grossmann,et al.  Semiclassical analysis of quantum localization of the periodically kicked Rydberg atom , 2004 .

[6]  E. Pollak,et al.  Optimization of the semiclassical initial value representation of the exact quantum-mechanical real time propagator , 2003 .

[7]  E. Pollak,et al.  Monte Carlo method for evaluating the quantum real time propagator. , 2003, Physical review letters.

[8]  J. Shao,et al.  Systematic Improvement of Initial Value Representations of the Semiclassical Propagator , 2003 .

[9]  William H. Miller,et al.  Semiclassical calculation of thermal rate constants in full Cartesian space: The benchmark reaction D+H2→DH+H , 2003 .

[10]  F. Grossmann,et al.  COMMENT: Comment on 'Semiclassical approximations in phase space with coherent states' , 2002 .

[11]  E. Pollak,et al.  A study of the semiclassical initial value representation at short times , 2002 .

[12]  W. Miller An alternate derivation of the Herman—Kluk (coherent state) semiclassical initial value representation of the time evolution operator , 2002 .

[13]  W. Miller On the Relation between the Semiclassical Initial Value Representation and an Exact Quantum Expansion in Time-Dependent Coherent States † , 2002 .

[14]  M. Alonso,et al.  Using rays better. III. Error estimates and illustrative applications in smooth media. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  M. Baranger,et al.  Comment on ‘Semiclassical approximations in phase space with coherent states’ , 2001, quant-ph/0105153.

[16]  Bambi Hu,et al.  General initial value form of the semiclassical propagator , 2001 .

[17]  William H. Miller,et al.  The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations , 2001 .

[18]  H. Grabert,et al.  CENTRIFUGAL TERMS IN THE WKB APPROXIMATION AND SEMICLASSICAL QUANTIZATION OF HYDROGEN , 1999, quant-ph/9904103.

[19]  M. Alonso,et al.  New approach to semiclassical analysis in mechanics , 1999 .

[20]  K. Kay,et al.  Globally uniform semiclassical wave functions for multidimensional systems , 1998 .

[21]  F. Grossmann,et al.  From the coherent state path integral to a semiclassical initial value representation of the quantum mechanical propagator , 1998 .

[22]  W. Miller Quantum and Semiclassical Theories of Chemical Reaction Rates , 1995 .

[23]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[24]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[25]  Voros Wentzel-Kramers-Brillouin method in the Bargmann representation. , 1989, Physical review. A, General physics.

[26]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[27]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .

[28]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[29]  N. Fröman Phase-integral formulas for level densities, normalization factors, and quantal expectation values, not involving wave functions , 1978 .

[30]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[31]  J. L. Dunham The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation , 1932 .

[32]  J. H. Van Vleck,et al.  The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics , 1928 .

[33]  K. Kay,et al.  Semiclassical initial value treatments of atoms and molecules. , 2005, Annual review of physical chemistry.

[34]  S. Garashchuk,et al.  Semiclassical calculation of chemical reaction dynamics via wavepacket correlation functions. , 2000, Annual review of physical chemistry.

[35]  William H. Miller,et al.  Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates , 1998 .

[36]  Michael F. Herman Dynamics by Semiclassical Methods , 1994 .

[37]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[38]  J. W. Humberston Classical mechanics , 1980, Nature.

[39]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .