A Systematic Proteomic Analysis of Listeria monocytogenes House-keeping Protein Secretion Systems*

Listeria monocytogenes is a firmicute bacterium causing serious infections in humans upon consumption of contaminated food. Most of its virulence factors are secretory proteins either released to the medium or attached to the bacterial surface. L. monocytogenes encodes at least six different protein secretion pathways. Although great efforts have been made in the past to predict secretory proteins and their secretion routes using bioinformatics, experimental evidence is lacking for most secretion systems. Therefore, we constructed mutants in the main housekeeping protein secretion systems, which are the Sec-dependent transport, the YidC membrane insertases SpoIIIJ and YqjG, as well as the twin-arginine pathway, and analyzed their secretion and virulence defects. Our results demonstrate that Sec-dependent secretion and membrane insertion of proteins via YidC proteins are essential for viability of L. monocytogenes. Depletion of SecA or YidC activity severely affected protein secretion, whereas loss of the Tat-pathway was without any effect on secretion, viability, and virulence. Two-dimensional gel electrophoresis combined with protein identification by mass spectrometry revealed that secretion of many virulence factors and of enzymes synthesizing and degrading the cell wall depends on the SecA route. This finding was confirmed by SecA inhibition experiments using sodium azide. Analysis of secretion of substrates typically dependent on the accessory SecA2 ATPase in wild type and azide resistant mutants of L. monocytogenes revealed for the first time that SecA2-dependent protein secretion also requires the ATPase activity of the house-keeping SecA protein.

[1]  Ross E Dalbey,et al.  The membrane insertase YidC. , 2014, Biochimica et biophysica acta.

[2]  B. Bensing,et al.  Selective transport by SecA2: an expanding family of customized motor proteins. , 2014, Biochimica et biophysica acta.

[3]  J. V. van Dijl,et al.  The Tat system of Gram-positive bacteria. , 2014, Biochimica et biophysica acta.

[4]  P. Crowley,et al.  YlxM Is a Newly Identified Accessory Protein That Influences the Function of Signal Recognition Particle Pathway Components in Streptococcus mutans , 2014, Journal of bacteriology.

[5]  M. Marahiel,et al.  The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. , 2013, Biochimica et biophysica acta.

[6]  A. Herskovits,et al.  Membrane Chaperone SecDF Plays a Role in the Secretion of Listeria monocytogenes Major Virulence Factors , 2013, Journal of bacteriology.

[7]  C. São-José,et al.  Characterization of two resuscitation promoting factors of Listeria monocytogenes. , 2013, Microbiology.

[8]  F. Commichau,et al.  The resuscitation promotion concept extends to firmicutes. , 2013, Microbiology.

[9]  B. Kallipolitis,et al.  The Tat Pathway Is Prevalent in Listeria monocytogenes Lineage II and Is Not Required for Infection and Spread in Host Cells , 2013, Journal of Molecular Microbiology and Biotechnology.

[10]  M. Desvaux,et al.  Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e. , 2013, Journal of proteomics.

[11]  N. Freitag,et al.  The Listeria monocytogenes ChiA Chitinase Enhances Virulence through Suppression of Host Innate Immunity , 2013, mBio.

[12]  I. Borovok,et al.  Prophage Excision Activates Listeria Competence Genes that Promote Phagosomal Escape and Virulence , 2012, Cell.

[13]  M. Desvaux,et al.  Subcellular Localization of Extracytoplasmic Proteins in Monoderm Bacteria: Rational Secretomics-Based Strategy for Genomic and Proteomic Analyses , 2012, PloS one.

[14]  Minyong Li,et al.  Fluorescein Analogues Inhibit SecA ATPase: The First Sub‐micromolar Inhibitor of Bacterial Protein Translocation , 2012, ChemMedChem.

[15]  K. Wilson,et al.  Structure of components of an intercellular channel complex in sporulating Bacillus subtilis , 2012, Proceedings of the National Academy of Sciences.

[16]  R. Daniel,et al.  DivIVA affects secretion of virulence‐related autolysins in Listeria monocytogenes , 2012, Molecular microbiology.

[17]  E. Leitão,et al.  The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle , 2011, Virulence.

[18]  Yi Pan,et al.  Nonclassical Protein Secretion by Bacillus subtilis in the Stationary Phase Is Not Due to Cell Lysis , 2011, Journal of bacteriology.

[19]  P. Somervuo,et al.  Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. , 2011, International journal of food microbiology.

[20]  Peng Wang,et al.  Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. , 2011, Biochimica et biophysica acta.

[21]  David J F du Plessis,et al.  The Sec translocase. , 2011, Biochimica et biophysica acta.

[22]  N. Freitag,et al.  Contribution of Chitinases to Listeria monocytogenes Pathogenesis , 2010, Applied and Environmental Microbiology.

[23]  R. Jayaswal,et al.  Transcriptomic Response of Listeria monocytogenes to Iron Limitation and fur Mutation , 2009, Applied and Environmental Microbiology.

[24]  B. Altincicek,et al.  Galleria mellonella as a Model System for Studying Listeria Pathogenesis , 2009, Applied and Environmental Microbiology.

[25]  A. Gründling,et al.  Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes , 2009, Molecular microbiology.

[26]  N. Freitag,et al.  Listeria monocytogenes — from saprophyte to intracellular pathogen , 2009, Nature Reviews Microbiology.

[27]  P. Grudnik,et al.  Protein targeting by the signal recognition particle , 2009, Biological chemistry.

[28]  A. Clarke,et al.  Energy transduction in protein transport and the ATP hydrolytic cycle of SecA , 2009, Proceedings of the National Academy of Sciences.

[29]  Y. Sugita,et al.  Conformational transition of Sec machinery inferred from bacterial SecYE structures , 2008, Nature.

[30]  Samuel I. Miller,et al.  An inhibitor of gram-negative bacterial virulence protein secretion. , 2008, Cell host & microbe.

[31]  S. Engelmann,et al.  Proteomic analysis of antioxidant strategies of Staphylococcus aureus: Diverse responses to different oxidants , 2008, Proteomics.

[32]  R. Losick,et al.  A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels , 2008, Molecular microbiology.

[33]  P. Cossart,et al.  Listeria monocytogenes, a unique model in infection biology: an overview. , 2008, Microbes and infection.

[34]  M. Braunstein,et al.  A new twist on an old pathway – accessory secretion systems , 2008, Molecular microbiology.

[35]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[36]  C. Gahan,et al.  Tools for Functional Postgenomic Analysis of Listeria monocytogenes , 2008, Applied and Environmental Microbiology.

[37]  S. Karamanou,et al.  Structural Basis for Signal-Sequence Recognition by the Translocase Motor SecA as Determined by NMR , 2007, Cell.

[38]  J. Vázquez-Boland,et al.  The PrfA virulence regulon. , 2007, Microbes and infection.

[39]  P. Cossart,et al.  Listeria monocytogenes Surface Proteins: from Genome Predictions to Function , 2007, Microbiology and Molecular Biology Reviews.

[40]  Vidhya Ramaswamy,et al.  Listeria--review of epidemiology and pathogenesis. , 2007, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[41]  P. Cossart,et al.  Control of Listeria Superoxide Dismutase by Phosphorylation* , 2006, Journal of Biological Chemistry.

[42]  Michel Hébraud,et al.  The protein secretion systems in Listeria: inside out bacterial virulence. , 2006, FEMS microbiology reviews.

[43]  C. Hill,et al.  Contribution of Penicillin-Binding Protein Homologs to Antibiotic Resistance, Cell Morphology, and Virulence of Listeria monocytogenes EGDe , 2006, Antimicrobial Agents and Chemotherapy.

[44]  H. Marquis Tissue Culture Cell Assays Used to Analyze Listeria monocytogenes , 2006, Current protocols in microbiology.

[45]  M. Rohde,et al.  Simultaneous Deficiency of both MurA and p60 Proteins Generates a Rough Phenotype in Listeria monocytogenes , 2005, Journal of bacteriology.

[46]  S. Way,et al.  The Mycobacterium tuberculosis ESAT-6 Homologue in Listeria monocytogenes Is Dispensable for Growth In Vitro and In Vivo , 2005, Infection and Immunity.

[47]  A. Charbit,et al.  Role of FliF and FliI of Listeria monocytogenes in Flagellar Assembly and Pathogenicity , 2005, Infection and Immunity.

[48]  A. Danchin,et al.  Regulation of the Bacillus subtilis ytmI Operon, Involved in Sulfur Metabolism , 2005, Journal of bacteriology.

[49]  Sierd Bron,et al.  Two minimal Tat translocases in Bacillus , 2004, Molecular microbiology.

[50]  M. Arnaud,et al.  New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria , 2004, Applied and Environmental Microbiology.

[51]  Uwe Völker,et al.  A comprehensive proteome map of growing Bacillus subtilis cells , 2004, Proteomics.

[52]  Antoine Danchin,et al.  Three Different Systems Participate in l-Cystine Uptake in Bacillus subtilis , 2004, Journal of bacteriology.

[53]  T. Rapoport,et al.  A large conformational change of the translocation ATPase SecA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Brian H. Raphael,et al.  Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus , 2004, Journal of bacteriology.

[55]  A. Kuhn,et al.  Escherichia coli YidC is a membrane insertase for Sec‐independent proteins , 2004, The EMBO journal.

[56]  T. Chakraborty,et al.  Identification and Characterization of a Peptidoglycan Hydrolase, MurA, of Listeria monocytogenes, a Muramidase Needed for Cell Separation , 2003, Journal of bacteriology.

[57]  L. Lenz,et al.  SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  I. Moll,et al.  Functional regulation of the Listeria monocytogenes bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain , 2003, Molecular microbiology.

[60]  Frens Pries,et al.  Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis * , 2002, The Journal of Biological Chemistry.

[61]  L. Lenz,et al.  Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype , 2002, Molecular microbiology.

[62]  K. Haga,et al.  Analysis of the Bacillus subtilis spoIIIJ Gene and Its Paralogue Gene, yqjG , 2002, Journal of bacteriology.

[63]  L. Gautier,et al.  Comparative Genomics of Listeria Species , 2001, Science.

[64]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[65]  S. Bron,et al.  Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome , 2000, Microbiology and Molecular Biology Reviews.

[66]  W. Goebel,et al.  LaXp180, a mammalian ActA‐binding protein, identified with the yeast two‐hybrid system, co‐localizes with intracellular Listeria monocytogenes , 2000, Cellular microbiology.

[67]  J. Bernhardt,et al.  Dual channel imaging of two‐dimensional electropherograms in Bacillus subtilis , 1999, Electrophoresis.

[68]  H. Goldfine,et al.  Mutagenesis of Active-Site Histidines ofListeria monocytogenes Phosphatidylinositol-Specific Phospholipase C: Effects on Enzyme Activity and Biological Function , 1999, Infection and Immunity.

[69]  R. Freudl,et al.  Isolation and characterization of a Bacillus subtilis secA mutant allele conferring resistance to sodium azide. , 1994, FEMS microbiology letters.

[70]  R. Freudl,et al.  An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtllis , 1993 .

[71]  W. Goebel,et al.  Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene , 1992, Journal of bacteriology.

[72]  K. M. Dolan,et al.  Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Pascale Fung,et al.  Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation , 1989, Infection and immunity.

[74]  R. Schoenfeld,et al.  Comparative Genomics of Listeria Species , 1976 .

[75]  Olivier Disson,et al.  2012 Landes Bioscience. Do not distribute. Targeting of the central nervous system by Listeria monocytogenes , 2012 .

[76]  M. Hecker,et al.  Bacillus subtilis YqjG is required for genetic competence development , 2011, Proteomics.

[77]  F Allerberger,et al.  Listeriosis: a resurgent foodborne infection. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[78]  S. Engelmann,et al.  Proteomic analysis to investigate regulatory networks in Staphylococcus aureus. , 2008, Methods in molecular biology.

[79]  M. Popowska,et al.  Classes and functions of Listeria monocytogenes surface proteins. , 2004, Polish journal of microbiology.

[80]  B. Dziadek,et al.  Classes and functions of Listeria monocytogenes surface proteins. , 2004 .

[81]  S. Bron,et al.  Signal peptide-dependent protein transport in Bacillus subtilis , 2000 .

[82]  Y. Sadaie,et al.  Acquisition of azide-resistance by elevated SecA ATPase activity confers azide-resistance upon cell growth and protein translocation in Bacillus subtilis. , 1995, Microbiology.

[83]  R. Freudl,et al.  An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtilis. , 1993, Molecular microbiology.