Recursively Defined Types in Constructive Type Theory
暂无分享,去创建一个
Prakash Panangaden | Michael I. Schwartzbach | M. I. Schwartzbach | Paul Mendler | P. Panangaden | P. Mendler
[1] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[2] Luca Cardelli,et al. Basic Polymorphic Typechecking , 1987, Sci. Comput. Program..
[3] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[4] D. Prawitz. Ideas and Results in Proof Theory , 1971 .
[5] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[6] R. Seely,et al. Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Václav Koubek,et al. Least Fixed Point of a Functor , 1979, J. Comput. Syst. Sci..
[8] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[9] F. William Lawvere,et al. Adjointness in Foundations , 1969 .
[10] Gordon D. Plotkin,et al. The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[11] Mitchell Wand. Fixed-Point Constructions in Order-Enriched Categories , 1979, Theor. Comput. Sci..
[12] John C. Mitchell,et al. Abstract types have existential types , 1985, POPL.
[13] Robert L. Constable,et al. Proofs as programs , 1985, TOPL.
[14] Robert L. Constable,et al. Recursive Definitions in Type Theory , 1985, Logic of Programs.
[15] N. P. Mendler,et al. Recursive Types and Type Constraints in Second-Order Lambda Calculus , 1987, LICS.
[16] A. Kolmogoroff. Zur Deutung der intuitionistischen Logik , 1932 .
[17] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[18] F W Lawvere,et al. AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[19] Richard Statman,et al. The Typed lambda-Calculus is not Elementary Recursive , 1979, Theor. Comput. Sci..
[20] Robert L. Constable,et al. Infinite Objects in Type Theory , 1986, LICS.
[21] David B. MacQueen. Using dependent types to express modular structure , 1986, POPL '86.
[22] Per Martin-Löf,et al. Constructive mathematics and computer programming , 1984 .