Efficient Tunable Laser Operation of Tm : KGd ( WO 4 ) 2 in the Continuous-Wave Regime at Room Temperature

Tm:KGd(WO4)2 is studied as a three-level laser on the 3F4 3H6 transition and a tunable source in the 2m spectral range, operating at room temperature. An overall tunability extending from 1790 to 2042 nm is achieved with maximum output powers of 400 mW for an absorbed pump power of 1 W. Various doping levels, pump wavelengths and polarization configurations are compared and the advantages of the monoclinic double tungstates over other Tm-hosts are outlined.

[1]  E. Cavalli,et al.  Growth and fluorescence properties of Tm3+ doped YVO4 and Y2O3 single crystals , 1997 .

[2]  H. Saito,et al.  Characterization of a Longitudinally Pumped CW, Room-Temperature Operation of Tm3+:YVO4 Laser , 1993 .

[3]  Yan Wang,et al.  Crystal growth of KGd (WO4)2:Tm3+ , 2003 .

[4]  N. Djeu,et al.  Further investigations of a 2-/spl mu/m Tm:YVO/sub 4/ laser , 1994 .

[5]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[6]  M. Mond,et al.  Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm , 2002 .

[7]  Yan Wang,et al.  Spectra and intensity parameters of Tm3+:KGd (WO4)2 laser crystal , 2003 .

[8]  Norman P. Barnes,et al.  Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .

[9]  A. A. Pavlyuk,et al.  New Stimulated Emission Channels of Pr$^{\bf{3+}}$ and Tm$^{\bf{3+}}$ Ions in Monoclinic KR(WO$_{\bf 4}$)$_{\bf 2}$ Type Crystals with Ordered Structure (R=Y and Gd) , 1997 .

[10]  E. Cavalli,et al.  Fluorescence dynamics of , , and , crystals , 1998 .

[11]  S. Wada,et al.  Growth and optical properties of Tm:GdVO4 single crystal , 1999 .

[12]  J. Gavaldà,et al.  Linear Thermal Expansion Tensor in KRE(WO4)2 (RE=Gd, Y, Er, Yb) Monoclinic Crystals , 2001 .

[13]  Valeriy Badikov,et al.  Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2 , 2002 .

[14]  F. Güell,et al.  1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals , 2004 .

[15]  L. J. Qin,et al.  Thermal conductivity and refractive indices of Nd:GdVO4 crystals , 2003 .

[16]  A. Penzkofer,et al.  Generation of frequency tunable femtosecond pulses in a cw pumped linear dispersion-balanced passive mode-locked rhodamine 6G dye laser , 1992 .

[17]  Heinz P. Weber,et al.  Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it , 1999 .

[18]  Igory V. Mochalov,et al.  Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd) , 1997 .

[19]  E. Golikova,et al.  Measurement of gain and evaluation of photon avalanche efficiency in 10% Tm:KY(WO4)2 crystal pumped by free-running Nd:YAG laser , 2003 .

[20]  Witold Ryba-Romanowski,et al.  YVO4 crystals – puzzles and challenges , 2003 .

[21]  M. Mond,et al.  Optical characterization of Yb,Tm:KYW crystal concerning laser application , 2002 .

[22]  H. Saito,et al.  Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm , 1993 .

[23]  F. Güell,et al.  Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals , 2004 .

[24]  Chen Xueyuan,et al.  Spectroscopic characteristics, magnetic properties and fluorescence dynamics of in crystal , 1997 .

[25]  D. Nikogosyan,et al.  Properties of Optical and Laser-Related Materials: A Handbook , 1997 .