The enabled state of DNA nanotechnology.

[1]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[2]  Cristina Costa Santini,et al.  A clocked finite state machine built from DNA. , 2013, Chemical communications.

[3]  Tim Liedl,et al.  M1.3--a small scaffold for DNA origami . , 2013, Nanoscale.

[4]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[5]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[6]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[7]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[8]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[9]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[10]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[11]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[12]  Hao Yan,et al.  DNA origami with double-stranded DNA as a unified scaffold. , 2012, ACS nano.

[13]  Yonggang Ke,et al.  Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. , 2012, Chemical science.

[14]  D. Baker,et al.  Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy , 2012, Science.

[15]  P. Rothemund,et al.  Nanotechnology: The importance of being modular , 2012, Nature.

[16]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[17]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[18]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[19]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[20]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[21]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[22]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[23]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[24]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[25]  S. Harrison,et al.  Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching , 2011, Nature.

[26]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[27]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[28]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[29]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[30]  J. Reif,et al.  Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. , 2011, Journal of the American Chemical Society.

[31]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[32]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[33]  A. Turberfield,et al.  DNA-templated protein arrays for single-molecule imaging. , 2011, Nano letters.

[34]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[35]  Peixuan Guo The emerging field of RNA nanotechnology. , 2010, Nature nanotechnology.

[36]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[37]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[38]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[39]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[40]  Akinori Kuzuya,et al.  Design and construction of a box-shaped 3D-DNA origami. , 2009, Chemical communications.

[41]  T. Liedl,et al.  Folding DNA origami from a double-stranded source of scaffold. , 2009, Journal of the American Chemical Society.

[42]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[43]  Tim Liedl,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[44]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[45]  Hao Yan,et al.  Scaffolded DNA origami of a DNA tetrahedron molecular container. , 2009, Nano letters.

[46]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[47]  F. Simmel,et al.  Isothermal assembly of DNA origami structures using denaturing agents. , 2008, Journal of the American Chemical Society.

[48]  Mingdong Dong,et al.  DNA origami design of dolphin-shaped structures with flexible tails. , 2008, ACS nano.

[49]  Eric A. Althoff,et al.  De Novo Computational Design of Retro-Aldol Enzymes , 2008, Science.

[50]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[51]  Pamela E. Constantinou,et al.  Architecture with GIDEON, a program for design in structural DNA nanotechnology. , 2006, Journal of molecular graphics & modelling.

[52]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[53]  Paul W. K. Rothemund,et al.  Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 , 2006 .

[54]  E. Winfree,et al.  Design and characterization of programmable DNA nanotubes. , 2004, Journal of the American Chemical Society.

[55]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[56]  Sándor Pongor,et al.  DNA analysis servers: plot.it, bend.it, model.it and IS , 2003, Nucleic Acids Res..

[57]  N. Seeman DNA in a material world , 2003, Nature.

[58]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[59]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[60]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[61]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[62]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[63]  B. Burrows IT and IS , 1983 .