Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys

Abstract In Ni-based superalloys, microtwinning is observed as an important deformation mechanism at intermediate temperature and low stress and strain rate conditions. Current knowledge concerning this unusual deformation mode is comprehensively reviewed, and fundamental aspects of the process are further developed using state of the art experimental and modeling techniques. The nature of microtwins and the microtwinning dislocations at the atomic level have been determined using High Angle Annular Dark Field Scanning Transmission Electron Microscopy imaging. The results unambiguously confirm that the operative twinning dislocations are identical Shockley partials a /6〈1 1 2〉, and that they propagate through the γ′ precipitates in closely-separated pairs on consecutive {1 1 1} planes. The rate-limiting process of the microtwinning deformation mechanism is the diffusion-controlled reordering in γ′-phase. It is shown that reordering requires very simple, vacancy-mediated exchange between Al and Ni atoms. The energetic aspect of the vacancy-mediated exchanges is studied for the first time using ab initio calculations. The concept of reordering as a rate-limiting process is generalized and shown to be relevant for other, previously reported deformation mechanisms in superalloys such as a 〈1 1 2〉 dislocation ribbons, and superlattice intrinsic and superlattice extrinsic stacking fault formation. Other diffusion phenomena associated with microtwinning, such as segregation of heavy elements, is also discussed and supported by experimental evidence. The influence of the γ/γ′ microstructure on microtwinning deformation mode is also discussed in light of observations and phase-field dislocation modeling results.

[1]  A. Sleeswyk Perfect dislocation pole models for twinning in the f.c.c. and b.c.c lattices , 1974 .

[2]  Roger C. Reed,et al.  DEFORMATION MECHANISMS IN NI-BASE DISK SUPERALLOYS AT HIGHER TEMPERATURES , 2008 .

[3]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[4]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[5]  Y. Mishin,et al.  Atomistic modeling of the γ and γ'-phases of the Ni-Al system , 2004 .

[6]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[7]  B. Shollock,et al.  Twin formation during creep in single crystals of nickel-based superalloys , 1999 .

[8]  T. Link Locking of super shockley partials in the super-alloy SRR99 after creep at 1033K , 1994 .

[9]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[10]  E. Hornbogen,et al.  Beobachtung der Wechselwirkung von Versetzungen mit kohärenten geordneten Zonen (II) , 1965 .

[11]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[12]  R. Reed,et al.  Primary creep in single crystal superalloys: Origins, mechanisms and effects , 2007 .

[13]  R. Jayaram,et al.  APFIM characterization of single-crystal PWA 1480 nickel-base superalloy , 1994 .

[14]  G. Chin,et al.  Formation of deformation twins in f.c.c. crystals , 1973 .

[15]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[16]  M. Mills,et al.  Direct observation of an extended complex stacking fault in the γ′ phase of a Ni-base superalloy , 2006 .

[17]  C. Shen,et al.  Phase field model of dislocation networks , 2003 .

[18]  E. Arzt,et al.  The kinetics of dislocation climb over hard particles—II. Effects of an attractive particle-dislocation interaction , 1988 .

[19]  D. Knowles,et al.  Mechanism of 〈112〉/3 slip initiation and anisotropy of γ′ phase in CMSX-4 during creep at 750°C and 750 MPa , 2003 .

[20]  H. J. AXON,et al.  Progress in Materials Science , 1963, Nature.

[21]  A. Argon,et al.  Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates , 1994 .

[22]  B. Kear,et al.  The mechanism of creep in gamma prime precipitation-hardened nickel-base alloys at intermediate temperatures , 1970 .

[23]  David Paul Mourer,et al.  DUAL HEAT TREAT PROCESS DEVELOPMENT FOR ADVANCED DISK APPLICATIONS , 2004 .

[24]  B. Décamps,et al.  On the shearing mechanism of γ′ precipitates by a single ( a /6)⟨112⟩ Shockley partial in Ni-based superalloys , 2004 .

[25]  Y. Mishin,et al.  Diffusion in the Ti–Al system , 2000 .

[26]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[27]  D. Knowles,et al.  Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4 , 2003 .

[28]  W. W. Milligan,et al.  Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT , 2005 .

[29]  P. Pirouz Deformation mode in silicon, slip or twinning? , 1987 .

[30]  M. Crimp,et al.  The locking of 〈112〉/3 super-Shockley partials in L12 ordered γ′ single crystals deformed at 77K , 1991 .

[31]  D. Blavette,et al.  The role of the atom probe in the study of nickel-based superalloys , 2000 .

[32]  A. F. Giamei,et al.  Viscous slip in the L12 lattice , 1969 .

[33]  M. Kolbe The high temperature decrease of the critical resolved shear stress in nickel-base superalloys , 2001 .

[34]  M. Legros,et al.  In-situ observation of deformation micromechanisms in a rafted γ/γ′ superalloy at 850 °C , 2002 .

[35]  B. Gleeson,et al.  Site preference of ternary alloying elements in Ni3Al: A first-principles study , 2006 .

[36]  D. M. Dimiduk,et al.  Discrete dislocation simulations of precipitation hardening in superalloys , 2004 .

[37]  M. Mills,et al.  Microtwinning during intermediate temperature creep of polycrystalline Ni-based superalloys: mechanisms and modelling , 2006 .

[38]  W. W. Milligan,et al.  The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480 , 1991 .

[39]  V. Vítek,et al.  Dissociation and core structure of 〈110〉 screw dislocations in L12 ordered alloys I. Core structure in an unstressed crystal , 1982 .

[40]  W. Kelin,et al.  Site preference of alloying additions in intermetallic compounds , 1993 .

[41]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[42]  M. Daw,et al.  Calculations of diffusion and diffusion-limited processes in Ni3Al using accelerated molecular dynamics , 2006 .

[43]  Volker Mohles,et al.  The peak- and overaged states of particle strengthened materials: computer simulations , 2001 .

[44]  F. Dunne,et al.  Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus , 2002 .

[45]  Chong-yu Wang,et al.  First-principles study of vacancy formation and migration in clean and Re-doped γ′-Ni3Al , 2009 .

[46]  T. Pollock,et al.  Chapter 63 Dislocations and high-temperature plastic deformation of superalloy single crystals , 2002 .

[47]  Chong-yu Wang,et al.  Site preference and alloying effect of platinum group metals in γ′-Ni3Al , 2004 .

[48]  P. Hazzledine,et al.  A TEM weak-beam study of dislocations in γ' in a deformed Ni-based superalloy , 1988 .

[49]  M. Doyama,et al.  Study of vacancies in the intermetallic compound Ni3Al by positron annihilation , 1984 .

[50]  H. Gleiter,et al.  Precipitation hardening by coherent particles , 1968 .

[51]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[52]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[53]  V. S. Subrahmanyam,et al.  Positronium reactions in AOT/n-heptane/water reversed micellar system incorporating metal ions , 1993 .

[54]  A. F. Giamei,et al.  On intrinsic/extrinsic stacking fault pairs in the Ll2 lattice , 1969 .

[55]  M. Mills,et al.  Modeling microtwinning during creep in Ni-based superalloys , 2006 .

[56]  J. Douin,et al.  Dissociated dislocations in confined plasticity , 2007 .

[57]  J. Venables Deformation twinning in face-centred cubic metals , 1961 .

[58]  R. Peierls The size of a dislocation , 1940 .

[59]  Sluiter,et al.  Site preference of ternary additions in Ni3Al. , 1995, Physical review. B, Condensed matter.

[60]  Alberto M. Cuitiño,et al.  Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations , 2001 .

[61]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[62]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[63]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .