Subquadratic Binary Field Multiplier in Double Polynomial System

We propose a new space efficient operator to multiply elements lying in a binary field GF(2^k). Our approach is based on a novel system of representation called "Double Polynomial System" which set elements as a bivariate polynomials over GF(2). Thanks to this system of representation, we are able to use a Lagrange representation of the polynomials and then get a logarithmic time multiplier with a space complexity of O(k^1.31) improving previous best known method.

[1]  Shuhong Gao Normal Bases over Finite Fields , 1993 .

[2]  Berk Sunar,et al.  Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields , 1998, IEEE Trans. Computers.

[3]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[4]  Thomas Plantard,et al.  Modular Number Systems: Beyond the Mersenne Family , 2004, Selected Areas in Cryptography.

[5]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[6]  V.K. Bhargava,et al.  A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields , 1993, IEEE Trans. Computers.

[7]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[8]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[9]  Christof Paar,et al.  Efficient Algorithms for Elliptic Curve Cryptosystems , 1997, CRYPTO.

[10]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[11]  Gilles Villard,et al.  Computing Popov and Hermite forms of polynomial matrices , 1996, ISSAC '96.

[12]  M. Anwar Hasan,et al.  A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields , 2007, IEEE Transactions on Computers.

[13]  Berk Sunar,et al.  Mastrovito Multiplier for All Trinomials , 1999, IEEE Trans. Computers.

[14]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[15]  Arnold Schönhage,et al.  Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2 , 1977, Acta Informatica.

[16]  B. Sunar,et al.  Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[17]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[18]  Yiqi Dai,et al.  Fast Bit-Parallel GF(2^n) Multiplier for All Trinomials , 2005, IEEE Trans. Computers.

[19]  Elwyn R. Berlekamp,et al.  Bit-serial Reed - Solomon encoders , 1982, IEEE Transactions on Information Theory.

[20]  Tibor Juhas The use of elliptic curves in cryptography , 2007 .