Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation
暂无分享,去创建一个
Stanley Osher | Yen-Hsi Richard Tsai | Shi Jin | Hailiang Liu | S. Osher | Hailiang Liu | Y. Tsai | Shi Jin
[1] Hailiang Liu,et al. A Level Set Framework for Capturing Multi-Valued Solutions of Nonlinear First-Order Equations , 2006, J. Sci. Comput..
[2] S. Osher,et al. Reflection in a Level Set Framework for Geometric Optics , 2004 .
[3] John H Booske,et al. Eulerian method for computing multivalued solutions of the Euler-Poisson equations and applications to wave breaking in klystrons. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] B. Engquist,et al. Regularization Techniques for Numerical Approximation of PDEs with Singularities , 2003, J. Sci. Comput..
[5] Laurent Gosse,et al. TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION , 2003 .
[6] S. Osher,et al. COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION USING THE LEVEL SET METHOD, WITH APPLICATIONS TO THE SEMI-CLASSICAL LIMIT OF SCHRÖDINGER EQUATIONS∗ , 2003 .
[7] Chohong Min,et al. Simplicial isosurfacing in arbitrary dimension and codimension , 2003 .
[8] Stanley Osher,et al. A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations , 2003 .
[9] Shi Jin,et al. Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .
[10] B. Engquist,et al. Computational high frequency wave propagation , 2003, Acta Numerica.
[11] S. Osher,et al. A level set-based Eulerian approach for anisotropic wave propagation , 2003 .
[12] Yoshikazu Giga,et al. A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations , 2003, Math. Comput..
[13] L. Gosse. Using K-Branch Entropy Solutions for Multivalued Geometric Optics Computations , 2002 .
[14] Stanley Osher,et al. Geometric Optics in a Phase-Space-Based Level Set and Eulerian Framework , 2002 .
[15] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..
[16] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[17] P. Markowich,et al. Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001, math-ph/0109029.
[18] Danping Peng,et al. Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..
[19] S. Osher,et al. Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .
[20] J. Strain. Fast Tree-Based Redistancing for Level Set Computations , 1999 .
[21] J. Strain. Semi-Lagrangian Methods for Level Set Equations , 1999 .
[22] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[23] Y. Brenier,et al. Sticky Particles and Scalar Conservation Laws , 1998 .
[24] Y. Brenier,et al. A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .
[25] S. Osher,et al. Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .
[26] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[27] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[28] B. Engquist,et al. Multi-phase computations in geometrical optics , 1996 .
[29] Y. Egorov,et al. Fourier Integral Operators , 1994 .
[30] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[31] ShuChi-Wang,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .
[32] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[33] E. Kluk,et al. A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .
[34] Johannes J. Duistermaat,et al. Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .
[35] L. Hörmander. Fourier integral operators. I , 1995 .
[36] Y. Zel’dovich. Gravitational instability: An Approximate theory for large density perturbations , 1969 .
[37] Donald Ludwig,et al. Uniform asymptotic expansions at a caustic , 1966 .
[38] Joseph B. Keller,et al. Corrected bohr-sommerfeld quantum conditions for nonseparable systems , 1958 .
[39] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[40] Eric F Darve,et al. Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .