A second-order accurate, operator splitting scheme for reaction-diffusion systems in an energetic variational formulation

A second-order accurate in time, positivity-preserving, and unconditionally energy stable operator splitting numerical scheme is proposed and analyzed for the system of reactiondiffusion equations with detailed balance. The scheme is designed based on an energetic variational formulation, in which the reaction part is reformulated in terms of the reaction trajectory, and both the reaction and diffusion parts dissipate the same free energy. At the reaction stage, the reaction trajectory equation is approximated by a second-order Crank-Nicolson type method. The unique solvability, positivity-preserving and energy-stability are established based on a convexity analysis. In the diffusion stage, an exact integrator is applied if the diffusion coefficients are constant, and a Crank-Nicolson type scheme is applied if the diffusion process becomes nonlinear. In either case, both the positivity-preserving property and energy stability could be theoretical established. Moreover, a combination of the numerical algorithms at both stages by the Strang splitting approach leads to a second-order accurate, structure preserving scheme for the original reaction-diffusion system. Numerical experiments are presented, which demonstrate the accuracy of the proposed scheme.

[1]  Chi-Wang Shu,et al.  Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows , 2018, J. Sci. Comput..

[2]  Oliver Junge,et al.  A Fully Discrete Variational Scheme for Solving Nonlinear Fokker-Planck Equations in Multiple Space Dimensions , 2017, SIAM J. Numer. Anal..

[3]  Matthias Liero,et al.  Gradient structures and geodesic convexity for reaction–diffusion systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Cheng Wang,et al.  A Positive and Energy Stable Numerical Scheme for the Poisson-Nernst-Planck-Cahn-Hilliard Equations with Steric Interactions , 2020, J. Comput. Phys..

[5]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[6]  Wenrui Hao,et al.  Spatial pattern formation in reaction–diffusion models: a computational approach , 2020, Journal of mathematical biology.

[7]  Enrico Bertolazzi,et al.  Positive and conservative schemes for mass action kinetics , 1996 .

[8]  Steven M. Wise,et al.  A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system , 2020, Math. Comput..

[9]  Maxime Laborde,et al.  An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[10]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[11]  Mi-Ho Giga,et al.  Variational Modeling and Complex Fluids , 2017 .

[12]  David Kinderlehrer,et al.  A Variational Principle for Molecular Motors , 2003 .

[13]  Chun Liu,et al.  An Introduction of Elastic Complex Fluids: An Energetic Variational Approach , 2009 .

[14]  Yoshikazu Giga,et al.  Handbook of Mathematical Analysis in Mechanics of Viscous Fluids , 2017 .

[15]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[16]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[17]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[18]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[19]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[20]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[21]  Cheng Wang,et al.  An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation , 2016 .

[22]  Cheng Wang,et al.  A Second Order Energy Stable Linear Scheme for a Thin Film Model Without Slope Selection , 2018, J. Sci. Comput..

[23]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[24]  Cheng Wang,et al.  Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential , 2017, J. Comput. Phys. X.

[25]  Frank Jülicher,et al.  Active gel physics , 2015, Nature Physics.

[26]  Filippo Santambrogio,et al.  Splitting Schemes and Segregation in Reaction Cross-Diffusion Systems , 2017, SIAM J. Math. Anal..

[27]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[28]  Maurice A. Biot,et al.  Thermodynamic principle of virtual dissipation and the dynamics of physical-chemical fluid mixtures including radiation pressure , 1982 .

[29]  Lili Ju,et al.  Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes , 2020, SIAM Rev..

[30]  Su Zhao,et al.  Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems , 2011, J. Comput. Phys..

[31]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[32]  Min Tang,et al.  An accurate front capturing scheme for tumor growth models with a free boundary limit , 2017, J. Comput. Phys..

[33]  Thomas O. Gallouët,et al.  A JKO Splitting Scheme for Kantorovich-Fisher-Rao Gradient Flows , 2016, SIAM J. Math. Anal..

[34]  Cheng Wang,et al.  Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation , 2012, J. Comput. Phys..

[35]  Stéphane Descombes,et al.  Convergence of a splitting method of high order for reaction-diffusion systems , 2001, Math. Comput..

[36]  Xueming Yang,et al.  Chemical reaction dynamics. , 2017, Chemical Society reviews.

[37]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[38]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[39]  Chun Liu,et al.  A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance , 2021, J. Comput. Phys..

[40]  F. I. G. R.,et al.  Thermodynamic Theory of Affinity : , 1937, Nature.

[41]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[42]  Cheng Wang,et al.  A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation , 2018 .

[43]  Amanda E. Diegel,et al.  Stability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation , 2014, 1411.5248.

[44]  Steven M. Wise,et al.  A positivity-preserving, energy stable scheme for a Ternary Cahn-Hilliard system with the singular interfacial parameters , 2021, J. Comput. Phys..

[45]  Anna Scotti,et al.  Positivity and Conservation Properties of Some Integration Schemes for Mass Action Kinetics , 2011, SIAM J. Numer. Anal..

[46]  José A. Carrillo,et al.  A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes , 2017, J. Sci. Comput..

[47]  D. Furihata,et al.  Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations , 2010 .

[48]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[49]  Chun Liu,et al.  A two species micro-macro model of wormlike micellar solutions and its maximum entropy closure approximations: An energetic variational approach , 2021, Journal of Non-Newtonian Fluid Mechanics.

[50]  F. Jülicher,et al.  Modeling molecular motors , 1997 .

[51]  Mark A. Peletier,et al.  Non-equilibrium Thermodynamical Principles for Chemical Reactions with Mass-Action Kinetics , 2015, SIAM J. Appl. Math..

[52]  Jean-David Benamou,et al.  An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .

[53]  Steven M. Wise,et al.  Convergence analysis of the variational operator splitting scheme for a reaction-diffusion system with detailed balance , 2021, SIAM J. Numer. Anal..

[54]  T. Elston,et al.  A robust numerical algorithm for studying biomolecular transport processes. , 2003, Journal of theoretical biology.

[55]  Lord Rayleigh,et al.  Note on the Numerical Calculation of the Roots of Fluctuating Functions , 1873 .

[56]  B. Perthame,et al.  The Hele–Shaw Asymptotics for Mechanical Models of Tumor Growth , 2013, Archive for Rational Mechanics and Analysis.

[57]  Hui Zhang,et al.  A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy , 2019, Communications in Mathematical Sciences.