Ideal schedules in parallel machine settings

Abstract An ideal schedule is a schedule that simultaneously minimizes the two most popular scheduling objectives, namely the makespan and the total completion time. If a scheduling problem always has an ideal schedule, then the problem is called an ideal problem. We summarize ideal problem results of various scheduling problems in different machine environments and with job characteristics that include precedence constraints, release dates, processing times, eligibility constraints and preemptions. We present a comprehensive overview of ideal schedules including our new findings.

[1]  Joseph Y.-T. Leung,et al.  Minimizing mean flow time for UET tasks , 2006, TALG.

[2]  B. J. Lageweg,et al.  Scheduling identical jobs on uniform parallel machines , 1989 .

[3]  Peter Brucker,et al.  A polynomial algorithm for P | pj=1, rj, outtree | ∑ Cj , 2003, Math. Methods Oper. Res..

[4]  Joseph Y.-T. Leung,et al.  Scheduling jobs with equal processing times subject to machine eligibility constraints , 2010, J. Sched..

[5]  Irene N. Lushchakova,et al.  Two machine preemptive scheduling problem with release dates, equal processing times and precedence constraints , 2006, Eur. J. Oper. Res..

[6]  Odile Bellenguez-Morineau,et al.  A survey on how the structure of precedence constraints may change the complexity class of scheduling problems , 2017, J. Sched..

[7]  Manfred K. Warmuth,et al.  A Fast Algorithm for Multiprocessor Scheduling of Unit-Length Jobs , 1989, SIAM J. Comput..

[8]  Barbara B. Simons,et al.  A fast algorithm for single processor scheduling , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[9]  David S. Johnson,et al.  Two-Processor Scheduling with Start-Times and Deadlines , 1977, SIAM J. Comput..

[10]  Marek Chrobak,et al.  The complexity of mean flow time scheduling problems with release times , 2006, J. Sched..

[11]  Eugene L. Lawler,et al.  Optimal Sequencing of a Single Machine Subject to Precedence Constraints , 1973 .

[12]  Jeffrey D. Ullman,et al.  NP-Complete Scheduling Problems , 1975, J. Comput. Syst. Sci..

[13]  David S. Johnson,et al.  Scheduling Equal-Length Tasks Under Treelike Precedence Constraints to Minimize Maximum Lateness , 1977, Math. Oper. Res..

[14]  Joseph Y.-T. Leung,et al.  Minimizing total completion time for UET tasks with release time and outtree precedence constraints , 2005, Math. Methods Oper. Res..

[15]  Eugene L. Lawler,et al.  Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .

[16]  Michael Pinedo,et al.  The "least flexible job first" rule in scheduling and in queueing , 2013, Oper. Res. Lett..

[17]  Joseph Y.-T. Leung,et al.  Preemptive Scheduling of Equal Length Jobs on Two Machines to Minimize Mean Flow Time , 1990, Oper. Res..

[18]  Robert E. Tarjan,et al.  Scheduling Unit-Time Tasks with Arbitrary Release Times and Deadlines , 1981, SIAM J. Comput..

[19]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[20]  Edward G. Coffman,et al.  Preemptive Scheduling of Real-Time Tasks on Multiprocessor Systems , 1970, JACM.

[21]  W. A. Horn Technical Note - Minimizing Average Flow Time with Parallel Machines , 1973, Oper. Res..

[22]  Joseph Y.-T. Leung,et al.  Scheduling Chain-Structured Tasks to Minimize Makespan and Mean Flow Time , 1991, Inf. Comput..

[23]  Edward G. Coffman,et al.  Ideal preemptive schedules on two processors , 2003, Acta Informatica.

[24]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[25]  Barbara B. Simons,et al.  Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary Release Times and Deadlines , 1983, SIAM J. Comput..

[26]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[27]  E. L. Lawler,et al.  Preemptive Scheduling of. Precedence-Constrained Jobs on Parallel Machines , 1981 .

[28]  Michael Pinedo,et al.  Scheduling equal length jobs with eligibility restrictions , 2020, Ann. Oper. Res..

[29]  Edward G. Coffman,et al.  Scheduling independent tasks to reduce mean finishing time , 1974, CACM.

[30]  Philippe Baptiste,et al.  Ten notes on equal-processing-time scheduling , 2004, 4OR.

[31]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[32]  Joseph Y.-T. Leung,et al.  Minimizing Mean Flow Time with Release Time Constraint , 1990, Theor. Comput. Sci..

[33]  Wieslaw Kubiak,et al.  Scheduling identical jobs with chain precedence constraints on two uniform machines , 1999, Math. Methods Oper. Res..

[34]  Peter Brucker,et al.  Complexity of scheduling problems with multi-purpose machines , 1997, Ann. Oper. Res..

[35]  Shui Lam,et al.  A Level Algorithm for Preemptive Scheduling , 1977, J. ACM.

[36]  Philippe Baptiste,et al.  Shortest path to nonpreemptive schedules of unit-time jobs on two identical parallel machines with minimum total completion time , 2004, Math. Methods Oper. Res..

[37]  Eugene L. Lawler,et al.  On Preemptive Scheduling of Unrelated Parallel Processors by Linear Programming , 1978, JACM.

[38]  Ronald L. Graham,et al.  Optimal scheduling for two-processor systems , 1972, Acta Informatica.

[39]  K. Mani Chandy,et al.  Scheduling partially ordered tasks with probabilistic execution times , 1975, SOSP.

[40]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[41]  Jacek Blazewicz,et al.  Scheduling Dependent Tasks with Different Arrival Times to Meet Deadlines , 1976, Performance.

[42]  T. C. Hu Parallel Sequencing and Assembly Line Problems , 1961 .

[43]  Wieslaw Kubiak,et al.  An efficient algorithm for finding ideal schedules , 2011, Acta Informatica.