Structure and composition of drusen associated with glomerulonephritis: Implications for the role of complement activation in drusen biogenesis

[1]  A C Bird,et al.  Bilateral macular drusen in age-related macular degeneration. Prognosis and risk factors. , 1994, Ophthalmology.

[2]  D. Pauleikhoff [Drusen in Bruch's membrane. Their significance for the pathogenesis and therapy of age-associated macular degeneration]. , 1992, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[3]  P T de Jong,et al.  An international classification and grading system for age-related maculopathy and age-related macular degeneration , 1995 .

[4]  S. Russell,et al.  Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. , 2000, American journal of ophthalmology.

[5]  G. Hageman,et al.  Human Ocular Drusen Possess Novel Core Domains with a Distinct Carbohydrate Composition , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[6]  P. Ward,et al.  Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. , 1997, The American journal of pathology.

[7]  C. Framme,et al.  [Subretinal neovascular membranes in membranoproliferative glomerulonephritis type II]. , 1998, Klinische Monatsblatter fur Augenheilkunde.

[8]  C. Short,et al.  Fundus changes in mesangiocapillary glomerulonephritis type II: vitreous fluorophotometry. , 1989, The British journal of ophthalmology.

[9]  Judith Alexander,et al.  Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Macular Photocoagulation Study Group. , 1997, Archives of ophthalmology.

[10]  V. Sheffield,et al.  A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy , 1999, Nature Genetics.

[11]  G. Hageman,et al.  Characterization of drusen-associated glycoconjugates. , 1997, Ophthalmology.

[12]  S. Russell,et al.  Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[13]  K. Preissner,et al.  Vitronectin gene expression in the adult human retina. , 1999, Investigative ophthalmology & visual science.

[14]  J. Wolter,et al.  Bilateral confluent drusen. , 1962, Archives of ophthalmology.

[15]  D. M. Gass,et al.  Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment , 1987 .

[16]  N. Bressler,et al.  Relationship of drusen and abnormalities of the retinal pigment epithelium to the prognosis of neovascular macular degeneration. The Macular Photocoagulation Study Group. , 1990, Archives of ophthalmology.

[17]  H. Burkhardt,et al.  Goodpasture Disease , 1999, The Journal of Biological Chemistry.

[18]  V. Sheffield,et al.  A peripherin/retinal degeneration slow mutation (Pro-210-Arg) associated with macular and peripheral retinal degeneration. , 1995, Ophthalmology.

[19]  D. Archer,et al.  The histochemistry of drusen. , 1971, American journal of ophthalmology.

[20]  G. Hageman,et al.  Molecular composition of drusen as related to substructural phenotype. , 1999, Molecular vision.

[21]  J M Seddon,et al.  Drusen characteristics in patients with exudative versus non-exudative age-related macular degeneration. , 1988, Retina.

[22]  M. K. Wirtz,et al.  Discrete expression and distribution pattern of TIMP-3 in the human retina and choroid. , 1997, Current eye research.

[23]  A. Milam,et al.  Tissue inhibitor of metalloproteinases-3 is a component of Bruch's membrane of the eye. , 1997, The American journal of pathology.

[24]  C. O'brien,et al.  Electrophysiology of type II mesangiocapillary glomerulonephritis with associated fundus abnormalities. , 1993, The British journal of ophthalmology.

[25]  J. Roider,et al.  Subretinale Neovaskularisationsmembranen bei Membranoproliferativer Glomerulonephritis Typ II , 1998 .

[26]  S. Russell,et al.  Drusen associated with aging and age‐related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[27]  B. Jahn,et al.  Interaction of the terminal complement components C5b-9 with synovial fibroblasts: binding to the membrane surface leads to increased levels in collagenase-specific mRNA. , 1993, Immunology.

[28]  S. Sarks,et al.  Drusen patterns predisposing to geographic atrophy of the retinal pigment epithelium. , 1982, Australian journal of ophthalmology.

[29]  C. Curcio,et al.  Accumulation of cholesterol with age in human Bruch's membrane. , 2001, Investigative ophthalmology & visual science.

[30]  V. Sheffield,et al.  Full characterization of the maculopathy associated with an Arg-172-Trp mutation in the RDS/peripherin gene. , 1996, Ophthalmic genetics.

[31]  L. V. Johnson,et al.  A potential role for immune complex pathogenesis in drusen formation. , 2000, Experimental eye research.

[32]  A. Bird,et al.  Correlation between biochemical composition and fluorescein binding of deposits in Bruch's membrane. , 1992, Ophthalmology.

[33]  N. McKechnie,et al.  Fundus changes in (type II) mesangiocapillary glomerulonephritis simulating drusen: a histopathological report. , 1989, The British journal of ophthalmology.

[34]  R. Gokal,et al.  Fundus changes in mesangiocapillary glomerulonephritis type II: clinical and fluorescein angiographic findings. , 1989, The British journal of ophthalmology.