Applied Interval Computation: A New Approach for Time-Delays Systems Analysis

This paper deals with interval analysis applied to linear time-delays systems. With basic examples, we describe some applications to solve various control problems, and to show that interval computation is an effective tool for time-delays systems analysis.

[1]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[2]  R. Firoozian Feedback Control Theory , 2009 .

[3]  K. Nagpal,et al.  ${\cal H}_\infty$ Control and Estimation Problems with Delayed Measurements: State-Space Solutions , 1997 .

[4]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[5]  D. D. Perlmutter,et al.  Stability of time‐delay systems , 1972 .

[6]  石島 辰太郎,et al.  予見・遅れをともなう方策とH∞制御 , 2002 .

[7]  Y. Tsypkin,et al.  Robust stability of time-delay systems with an uncertain time-delay constant , 1993 .

[8]  Erik I. Verriest,et al.  Frequency domain robust stability criteria for linear delay systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[9]  E. W. Kamen,et al.  Linear systems with commensurate time delays: stability and stabilization independent of delay , 1982 .

[10]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[11]  Akira Kojima,et al.  H/sup /spl infin// control for preview and delayed strategies , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[12]  Jürgen Ackermann,et al.  Computing stable regions in parameter spaces for a class of quasipolynomials , 2003 .

[13]  Helmut Ratschek,et al.  Inclusion functions and global optimization , 1985, Math. Program..

[14]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[15]  Pavel Zítek,et al.  Quasipolynomial mapping based rootfinder for analysis of time delay systems , 2003 .

[16]  Ramon E. Moore,et al.  Inclusion functions and global optimization II , 1988, Math. Program..

[17]  A. Neumaier Interval methods for systems of equations , 1990 .

[18]  V. Kharitonov,et al.  Robust stability of time delay systems and the finite inclusions theorem , 2003 .

[19]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[20]  Roberto Tempo,et al.  Extreme point results for robust stabilization of interval plants with first-order compensators , 1992 .

[21]  V. Kolmanovskii,et al.  Applied Theory of Functional Differential Equations , 1992 .

[22]  K. ENGELBORGHS,et al.  On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations , 2002, SIAM J. Numer. Anal..

[23]  Hans Zwart,et al.  On /spl Hscr//sub /spl infin// control for dead-time systems , 2000 .

[24]  V. Kharitonov,et al.  Robust stability of time-delay systems , 1994, IEEE Trans. Autom. Control..

[25]  E. Walter,et al.  Guaranteed characterization of stability domains via set inversion , 1994, IEEE Trans. Autom. Control..

[26]  Hans Zwart,et al.  On 𝒽∞ control for dead-time systems , 2000, IEEE Trans. Autom. Control..

[27]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[28]  Michaël Di Loreto,et al.  Application du calcul par intervalles aux systèmes à retards , 2005 .

[29]  H. Kokame,et al.  Stability of x(t)=Ax(t)+Bx(t- tau ) , 1989 .

[30]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[31]  A. Olbrot,et al.  Robust stability for time-delay systems: the edge theorem and graphical tests , 1989 .

[32]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[33]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[34]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[35]  Jie Chen,et al.  Robust stability of quasipolynomials: vertex-type tests and extensions , 2004, Proceedings of the 2004 American Control Conference.