Automatic Conversion of Mesh Animations into Skeleton‐based Animations

Recently, it has become increasingly popular to represent animations not by means of a classical skeleton‐based model, but in the form of deforming mesh sequences. The reason for this new trend is that novel mesh deformation methods as well as new surface based scene capture techniques offer a great level of flexibility during animation creation. Unfortunately, the resulting scene representation is less compact than skeletal ones and there is not yet a rich toolbox available which enables easy post‐processing and modification of mesh animations. To bridge this gap between the mesh‐based and the skeletal paradigm, we propose a new method that automatically extracts a plausible kinematic skeleton, skeletal motion parameters, as well as surface skinning weights from arbitrary mesh animations. By this means, deforming mesh sequences can be fully‐automatically transformed into fullyrigged virtual subjects. The original input can then be quickly rendered based on the new compact bone and skin representation, and it can be easily modified using the full repertoire of already existing animation tools.

[1]  Cary B. Phillips,et al.  Multi-weight enveloping: least-squares approximation techniques for skin animation , 2002, SCA '02.

[2]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[3]  Michael Gleicher,et al.  Building efficient, accurate character skins from examples , 2003, ACM Trans. Graph..

[4]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[5]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[6]  John P. Lewis,et al.  Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation , 2000, SIGGRAPH.

[7]  Sebastian Thrun,et al.  Recovering Articulated Object Models from 3D Range Data , 2004, UAI.

[8]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[9]  Hans-Peter Seidel,et al.  Marker-less Deformable Mesh Tracking for Human Shape and Motion Capture , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Nancy M. Amato,et al.  Simultaneous shape decomposition and skeletonization , 2006, SPM '06.

[11]  Norman I. Badler,et al.  Multi-dimensional input techniques and articulated figure positioning by multiple constraints , 1987, I3D '86.

[12]  Hans-Peter Seidel,et al.  Rapid Animation of Laser-scanned Humans , 2007, 2007 IEEE Virtual Reality Conference.

[13]  Hans-Peter Seidel,et al.  M3: Marker-free Model Reconstruction and Motion Tracking from 3D Voxel Data , 2004 .

[14]  Christian Rössl,et al.  Animation collage , 2007, SCA '07.

[15]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[16]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[17]  Hans-Peter Seidel,et al.  Automatic Learning of Articulated Skeletons from 3D Marker Trajectories , 2006, ISVC.

[18]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[19]  Michael Garland,et al.  Editing arbitrarily deforming surface animations , 2006, SIGGRAPH 2006.

[20]  Jovan Popovic,et al.  Automatic rigging and animation of 3D characters , 2007, ACM Trans. Graph..

[21]  Alexis Angelidis,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Kinodynamic Skinning Using Volume-preserving Deformations , 2022 .

[22]  Hans-Peter Seidel,et al.  Skeleton‐based Variational Mesh Deformations , 2007, Comput. Graph. Forum.

[23]  David A. Forsyth,et al.  Skeletal parameter estimation from optical motion capture data , 2004, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[24]  Tsuneya Kurihara,et al.  Modeling deformable human hands from medical images , 2004, SCA '04.

[25]  David A. Forsyth,et al.  Skeletal Parameter Estimation from Optical Motion Capture Data , 2005, CVPR.

[26]  Kun Zhou,et al.  Gradient domain editing of deforming mesh sequences , 2007, ACM Trans. Graph..

[27]  Kun Zhou,et al.  Gradient domain editing of deforming mesh sequences , 2007, SIGGRAPH 2007.

[28]  Christine Depraz,et al.  Harmonic skeleton for realistic character animation , 2007, SCA '07.

[29]  Kari Pulli,et al.  Real-time enveloping with rotational regression , 2007, ACM Trans. Graph..

[30]  Jirí Zára,et al.  Skinning with dual quaternions , 2007, SI3D.

[31]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[32]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[33]  Ariel Shamir,et al.  On‐the‐fly Curve‐skeleton Computation for 3D Shapes , 2007, Comput. Graph. Forum.

[34]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[35]  Ronald Poppe,et al.  Vision-based human motion analysis: An overview , 2007, Comput. Vis. Image Underst..

[36]  James E. Gain,et al.  Animation space: A truly linear framework for character animation , 2006, TOGS.

[37]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[38]  Scott Schaefer,et al.  Example-based skeleton extraction , 2007, Symposium on Geometry Processing.