Silicon nitride waveguide integrated with cross bowtie nanoplasmonic antenna for tunable dipole plasmon resonance and maximum local field enhancement

Abstract. A single transverse electric mode silicon nitride strip waveguide functionalized with cross bowtie nanoplasmonic antenna is investigated, and then its tunable dipole plasmon resonance and maximum local field enhancement are numerically analyzed. The cross bowtie antenna is composed of a horizontal bowtie parallel to the propagation and a vertical bowtie parallel to the electric field. We demonstrate that the dipole plasmon resonance wavelength of localized surface plasmon resonance of cross bowtie antenna can be tuned by the horizontal bowtie, specifically by the edge length of its regular triangular nanoprisms, and the dipole plasmon resonance wavelength is independent of the horizontal gap. We also show that the maximum local field enhancement of cross bowtie antenna can be tuned by the vertical bowtie, specifically by the edge length of its regular triangular nanoprisms. The tunable dipole plasmon resonance and maximum local field enhancement of integrated cross bowtie nanoplasmonic antenna can practically be applied for on-chip sensing applications.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  G. Mie Contributions to the optics of turbid media, particularly of colloidal metal solutions , 1976 .

[3]  P. Barber,et al.  Absorption and scattering of light by small particles , 1984 .

[4]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[5]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[6]  C. Mirkin,et al.  Triangular nanoframes made of gold and silver , 2003 .

[7]  Sergio B. Mendes,et al.  Planar integrated optical waveguide spectroscopy , 2005 .

[8]  M. Ratner,et al.  Multipolar excitation in triangular nanoprisms. , 2005, The Journal of chemical physics.

[9]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[10]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[11]  Chad A Mirkin,et al.  Colloidal gold and silver triangular nanoprisms. , 2009, Small.

[12]  J. Dionne,et al.  Silicon-Based Plasmonics for On-Chip Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[14]  F. Guédjé,et al.  Optical properties of single silver triangular nanoprism , 2012 .

[15]  Laura M. Lechuga,et al.  Integrated optical devices for lab‐on‐a‐chip biosensing applications , 2012 .

[16]  F. B. Arango,et al.  Plasmonic antennas hybridized with dielectric waveguides , 2012, CLEO: 2013.

[17]  Roel Baets,et al.  Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide , 2013, CLEO: 2013.

[18]  F. R. Ornellas,et al.  Triangular metal nanoprisms of Ag, Au, and Cu: Modeling the influence of size, composition, and excitation wavelength on the optical properties , 2013 .

[19]  Siva Yegnanarayanan,et al.  Hybrid Integrated Plasmonic-photonic Waveguides for On-chip Localized Surface Plasmon Resonance (lspr) Sensing and Spectroscopy References and Links , 2022 .

[20]  Roel Baets,et al.  Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. , 2014, Optics letters.

[21]  Ali Adibi,et al.  On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform. , 2015, Nano letters.

[22]  Wim Bogaerts,et al.  Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] , 2015 .

[23]  R. Baets,et al.  Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. , 2015, Optics express.

[24]  F. Gardes,et al.  Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. , 2015, Optics express.

[25]  S. Alsheheri Modeling and Simulation of Optical Properties of Noble Metals Triangular Nanoprisms , 2016 .

[26]  A. Knauer,et al.  Explanation of the size dependent in-plane optical resonance of triangular silver nanoprisms. , 2016, Physical chemistry chemical physics : PCCP.

[27]  Yūta Noda,et al.  Systematic control of edge length, tip sharpness, thickness, and localized surface plasmon resonance of triangular Au nanoprisms , 2016, Journal of Nanoparticle Research.

[28]  Michael Canva,et al.  Surface enhanced Raman scattering improvement of gold triangular nanoprisms by a gold reflective underlayer for chemical sensing , 2016 .

[29]  Nathan Youngblood,et al.  Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. , 2017, Nano letters.