Biophysical investigation of vape additives with complex lung surfactant model systems and physiological surfactant extracts

[1]  E. Prenner,et al.  Pulmonary surfactant function and molecular architecture is disrupted in the presence of vaping additives. , 2023, Colloids and surfaces. B, Biointerfaces.

[2]  E. Prenner,et al.  Biophysical analysis of gelatin and PLGA nanoparticle interactions with complex biomimetic lung surfactant models , 2022, RSC advances.

[3]  E. Prenner,et al.  Vaping additives negatively impact the stability and lateral film organization of lung surfactant model systems. , 2022, Nanomedicine.

[4]  Brett W. Rickeard,et al.  A mechanical mechanism for vitamin E acetate in E-cigarette/vaping associated lung injury (EVALI). , 2020, Chemical research in toxicology.

[5]  Hanjun Lee Vitamin E acetate as linactant in the pathophysiology of EVALI , 2020, Medical Hypotheses.

[6]  J. Pérez-Gil,et al.  Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis , 2020, International journal of molecular sciences.

[7]  D. Christiani Vaping-Induced Lung Injury. , 2020, The New England journal of medicine.

[8]  M. Goniewicz,et al.  An Animal Model of Inhaled Vitamin E Acetate and EVALI-like Lung Injury. , 2020, The New England journal of medicine.

[9]  T. Falconer,et al.  Hydrogen Bonding Between Tetrahydrocannabinol and Vitamin E Acetate in Unvaped, Aerosolized, and Condensed Aerosol E-Liquids. , 2020, Analytical chemistry.

[10]  Brett W. Rickeard,et al.  The antioxidant vitamin E as a membrane raft modulator: Tocopherols do not abolish lipid domains. , 2020, Biochimica et biophysica acta. Biomembranes.

[11]  Brian A. King,et al.  Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI. , 2019, The New England journal of medicine.

[12]  F. Boudi,et al.  Vitamin E Acetate as a Plausible Cause of Acute Vaping-related Illness , 2019, Cureus.

[13]  P. Dicpinigaitis,et al.  Vaping-Associated Acute Respiratory Failure Due to Acute Lipoid Pneumonia , 2019, Lung.

[14]  R. Pacifici,et al.  Cannabinoids determination in bronchoalveolar lavages of cannabis smokers with lung disease , 2018, Clinical chemistry and laboratory medicine.

[15]  A. Macooie,et al.  Comparative evaluation of the effects of BLES and Survanta on treatment of respiratory distress syndrome in newborns , 2018, Journal of family medicine and primary care.

[16]  W. Bernhard Lung surfactant: Function and composition in the context of development and respiratory physiology. , 2016, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[17]  J. Pérez-Gil,et al.  Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. , 2014, Biochimica et biophysica acta.

[18]  Denice C. Bay,et al.  Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. , 2013, Chemistry and physics of lipids.

[19]  C. Casals,et al.  Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. , 2012, Biochimica et biophysica acta.

[20]  R. Veldhuizen,et al.  A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. , 2012, Biochimica et biophysica acta.

[21]  R. Turner,et al.  Real-time imaging of lipid domains and distinct coexisting membrane protein clusters. , 2012, Chemistry and physics of lipids.

[22]  Qihui Fan,et al.  On the low surface tension of lung surfactant. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[23]  I. Mingarro,et al.  Palmitoylation of pulmonary surfactant protein SP-C is critical for its functional cooperation with SP-B to sustain compression/expansion dynamics in cholesterol-containing surfactant films. , 2010, Biophysical journal.

[24]  P. Dynarowicz-Łątka,et al.  Grazing incidence diffraction and X-ray reflectivity studies of the interactions of inorganic mercury salts with membrane lipids in Langmuir monolayers at the air/water interface. , 2010, The journal of physical chemistry. B.

[25]  J. Johansson,et al.  Synthetic Surfactant Based on Analogues of SP-B and SP-C Is Superior to Single-Peptide Surfactants in Ventilated Premature Rabbits , 2010, Neonatology.

[26]  E. Goormaghtigh,et al.  Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression-expansion dynamics. , 2009, Biophysical journal.

[27]  S. Rugonyi,et al.  The biophysical function of pulmonary surfactant , 2008, Respiratory Physiology & Neurobiology.

[28]  Z. Leonenko,et al.  Pulmonary Surfactant Self-Assembles into a Functional Film of Defined Molecular Architecture Irrespective of Concentration and Solvent of the Spreading Solution: A Fluorescence and Atomic Force Microscopy Study , 2008 .

[29]  Luca Monticelli,et al.  The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. , 2007, Biophysical journal.

[30]  L. Monticelli,et al.  An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. , 2007, Biophysical journal.

[31]  D. Vollhardt,et al.  Progress in characterization of Langmuir monolayers by consideration of compressibility. , 2006, Advances in colloid and interface science.

[32]  E. Finot,et al.  Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study. , 2006, Ultramicroscopy.

[33]  W. Schoel,et al.  Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. , 2005, Biochimica et biophysica acta.

[34]  J. Miñones,et al.  The effect of polar groups on structural characteristics of phospholipid monolayers spread at the air–water interface , 2002 .

[35]  J. Zasadzinski,et al.  Influence of pulmonary surfactant protein B on model lung surfactant monolayers , 2002 .

[36]  S. Schürch,et al.  Surface activity in vitro: role of surfactant proteins. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[37]  A. Postle,et al.  A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[38]  T. Mavromoustakos,et al.  Effects of cannabinoids in membrane bilayers containing cholesterol. , 1999, Biochimica et biophysica acta.

[39]  R. Veldhuizen,et al.  The role of lipids in pulmonary surfactant. , 1998, Biochimica et biophysica acta.

[40]  T. Vanderlick,et al.  A Close Look at Domain Formation in DPPC Monolayers , 1997 .

[41]  J. Gomez-Fernandez,et al.  Calorimetric and infrared spectroscopic studies of the interaction of α‐tocopherol and α‐tocopheryl acetate with phospholipid vesicles , 1986 .

[42]  R. Harris,et al.  Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies. , 1985, Journal of Pharmacology and Experimental Therapeutics.

[43]  L. Nogee,et al.  Surfactant dysfunction. , 2011, Paediatric respiratory reviews.

[44]  S. Shelley,et al.  Biochemical composition of adult human lung surfactant , 2007, Lung.

[45]  J. Pérez-Gil,et al.  Critical structure-function determinants within the N-terminal region of pulmonary surfactant protein SP-B. , 2006, Biophysical journal.

[46]  T. Weaver,et al.  Function of surfactant proteins B and C. , 2001, Annual review of physiology.

[47]  M. Amrein,et al.  The structure of a model pulmonary surfactant as revealed by scanning force microscopy. , 1997, Biophysical journal.

[48]  M. Sieber,et al.  A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant , 1997, European Biophysics Journal.

[49]  B. Ames ASSAY OF INORGANIC PHOSPHATE, TOTAL PHOSPHATE AND PHOSPHATASE , 1966 .