Modelling and analysis of spatio-temporal dynamics of a marine ecosystem

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  T. K. Kar,et al.  Modeling and analysis of a marine plankton system with nutrient recycling and diffusion , 2015, Complex..

[3]  M. Kuwamura Turing instabilities in prey–predator systems with dormancy of predators , 2014, Journal of Mathematical Biology.

[4]  Joydev Chattopadhyay,et al.  Phytoplankton-zooplankton dynamics in the 'presence' or 'absence' of toxic phytoplankton , 2013, Appl. Math. Comput..

[5]  Jinhuo Luo Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication. , 2013, Mathematical biosciences.

[6]  Feng Rao,et al.  Spatiotemporal dynamics in a reaction–diffusion toxic-phytoplankton–zooplankton model , 2013 .

[7]  Wensheng Yang,et al.  Dynamics of a diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes , 2013, Comput. Math. Appl..

[8]  Min Zhao,et al.  Effect of Prey Refuge on the Spatiotemporal Dynamics of a Modified Leslie-Gower Predator-Prey System with Holling Type III Schemes , 2013, Entropy.

[9]  T. K. Kar,et al.  Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure , 2013, Nonlinear Dynamics.

[10]  S. Rinaldi,et al.  Conditions for patchiness in plankton models. , 2013, Theoretical population biology.

[11]  Christopher K. Wikle,et al.  Modeling 3‐D spatio‐temporal biogeochemical processes with a forest of 1‐D statistical emulators , 2013 .

[12]  Kunal Chakraborty,et al.  Effort dynamics of a delay-induced prey–predator system with reserve , 2012 .

[13]  Juan Zhang,et al.  Pattern formation of a spatial predator-prey system , 2012, Appl. Math. Comput..

[14]  Xiaofei He,et al.  Bifurcation analysis in a delayed Lokta–Volterra predator–prey model with two delays , 2011 .

[15]  Xin Qu,et al.  Qualitative analysis for a ratio-dependent predator-prey model with disease and diffusion , 2011, Appl. Math. Comput..

[16]  Jianjun Li,et al.  A strongly coupled predator-prey system with modified Holling-Tanner functional response , 2010, Comput. Math. Appl..

[17]  Biao Wang,et al.  Stationary patterns of a predator-prey model with spatial effect , 2010, Appl. Math. Comput..

[18]  Dongwoo Sheen,et al.  Turing instability for a ratio-dependent predator-prey model with diffusion , 2009, Appl. Math. Comput..

[19]  Ruiqing Shi,et al.  The study of a ratio-dependent predator–prey model with stage structure in the prey , 2009 .

[20]  Hua Su,et al.  Dynamic complexities of a predator-prey model with generalized Holling type III functional response and impulsive effects , 2008, Comput. Math. Appl..

[21]  Yongzhen Pei,et al.  Species extinction and permanence in a prey–predator model with two-type functional responses and impulsive biological control , 2008 .

[22]  S. Petrovskii,et al.  Spatiotemporal patterns in ecology and epidemiology : theory, models, and simulation , 2007 .

[23]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.

[24]  M. A. Aziz-Alaoui,et al.  Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes , 2003, Appl. Math. Lett..

[25]  M. A. Aziz-Alaoui,et al.  Study of a Leslie–Gower-type tritrophic population model , 2002 .

[26]  S. Petrovskii,et al.  Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. , 2001, Theoretical population biology.

[27]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[28]  Mary R. Myerscough,et al.  Stability, persistence and structural stability in a classical predator-prey model , 1996 .

[29]  Mercedes Pascual,et al.  Diffusion-induced chaos in a spatial predator–prey system , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Li Wu,et al.  Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton , 2014, Appl. Math. Comput..

[31]  M. Bandyopadhyay,et al.  DIFFUSIVE INSTABILITY IN A PREY-PREDATOR SYSTEM WITH TIME-DEPENDENT DIFFUSIVITY , 2003 .

[32]  R. Veit,et al.  Partial Differential Equations in Ecology: Spatial Interactions and Population Dynamics , 1994 .