Mumford–Shah Model for One-to-One Edge Matching

This paper presents a new algorithm based on the Mumford-Shah model for simultaneously detecting the edge features of two images and jointly estimating a consistent set of transformations to match them. Compared to the current asymmetric methods in the literature, this fully symmetric method allows one to determine one-to-one correspondences between the edge features of two images. The entire variational model is realized in a multiscale framework of the finite element approximation. The optimization process is guided by an estimation minimization-type algorithm and an adaptive generalized gradient flow to guarantee a fast and smooth relaxation. The algorithm is tested on T1 and T2 magnetic resonance image data to study the parameter setting. We also present promising results of four applications of the proposed algorithm: interobject monomodal registration, retinal image registration, matching digital photographs of neurosurgery with its volume data, and motion estimation for frame interpolation.

[1]  C. Broit Optimal registration of deformed images , 1981 .

[2]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[3]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[4]  Riccardo March,et al.  Visual reconstruction with discontinuities using variational methods , 1992, Image Vis. Comput..

[5]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[6]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[7]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[8]  Karl J. Friston,et al.  High-Dimensional Image Registration Using Symmetric Priors , 1999, NeuroImage.

[9]  Pierre Moulin,et al.  Frame interpolation and bidirectional prediction of video using compactly encoded optical-flow fields and label fields , 1999, IEEE Trans. Circuits Syst. Video Technol..

[10]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[11]  Martin Rumpf,et al.  Relations between Optimization and Gradient Flow Methods with Applications to Image Registration , 2001 .

[12]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[13]  A. Yezzi,et al.  A variational framework for joint segmentation and registration , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[14]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[15]  Kai-Kuang Ma,et al.  Adaptive rood pattern search for fast block-matching motion estimation , 2002, IEEE Trans. Image Process..

[16]  Charles V. Stewart,et al.  A Feature-Based, Robust, Hierarchical Algorithm for Registering Pairs of Images of the Curved Human Retina , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Charles V. Stewart,et al.  A Feature-Based Technique for Joint Linear Estimation of High-Order Image-to-Mosaic Transformations: Mosaicing the Curved Human Retina , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gary E. Christensen,et al.  Consistent landmark and intensity-based image registration , 2002, IEEE Transactions on Medical Imaging.

[19]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[20]  U. Clarenz,et al.  Towards fast non-rigid registration , 2003 .

[21]  Stephen R. Marsland,et al.  Groupwise Non-rigid Registration Using Polyharmonic Clamped-Plate Splines , 2003, MICCAI.

[22]  Stanislav Kovacic,et al.  Symmetric image registration , 2003, SPIE Medical Imaging.

[23]  Martin Rumpf,et al.  A Variational Approach to Nonrigid Morphological Image Registration , 2004, SIAM J. Appl. Math..

[24]  Mohammad Umar Siddiqi,et al.  Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation , 2004, EURASIP J. Adv. Signal Process..

[25]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[26]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[27]  J. Jan,et al.  Registration of bimodal retinal images - improving modifications , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[28]  Michael Unser,et al.  Elastic registration of biological images using vector-spline regularization , 2005, IEEE Transactions on Biomedical Engineering.

[29]  Benjamin Berkels,et al.  A Variational Framework for Joint Image Registration, Denoising and Edge Detection , 2006, Bildverarbeitung für die Medizin.

[30]  Marc Droske,et al.  A Mumford-Shah Level-Set Approach for Geometric Image Registration , 2006, SIAM J. Appl. Math..

[31]  Carlos Ortiz-de-Solorzano,et al.  Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization , 2006, CVAMIA.

[32]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[33]  M. Droske,et al.  Mumford–Shah based registration: a comparison of a level set and a phase field approach , 2009 .

[34]  J. Michael Fried,et al.  Multichannel image segmentation using adaptive finite elements , 2009 .