A Study of the Durability of Concrete Reinforced with Hemp Fibers Exposed to External Sulfatic Attack

Abstract The purpose of this paper is to study the durability of concrete reinforced with hemp fibers in the face of external Sulfatic attack. For this purpose, five types of concrete were formulated; three types of concrete reinforced with hemp fibers (HC-0.25, HC-0.5, and HC-1) at 0.25%, 0.5%, and 1 % of hemp fibers in volume, respectively. And two control concretes, being ordinary concrete (OC) and polypropylene fiber reinforced concrete (PC). To assess the sulfatic attacks, the described concrete types underwent two aging protocols: 1) a complete immersion in 12.5 % Sodium Sulfate (Na2SO4) solution, and 2) an accelerated aging protocol consisting of immersion/drying in the same sulfate solution at a temperature of 60°C. The results show that concrete reinforced with 0.25 % of hemp fibers is the optimal amount compared to control concretes in terms of physico-mechanical performance and durability under sulfate attack. This number of fibers could enable the production of green and durable structural concretes based on untreated hemp fibers.

[1]  Lijing Wang,et al.  Properties of hemp fibre reinforced concrete composites , 2006 .

[2]  P. Song,et al.  Mechanical properties of polypropylene hybrid fiber-reinforced concrete , 2008 .

[3]  E. Rozière,et al.  New procedure to investigate external sulphate attack on cementitious materials , 2012 .

[4]  D. Feldman,et al.  Fibre reinforced cementitious composites , 1993 .

[5]  N. Belayachi,et al.  Properties of cementitious mortars reinforced with natural fibers , 2017 .

[6]  Ildiko Merta,et al.  Fracture energy of natural fibre reinforced concrete , 2013 .

[7]  Turan Özturan,et al.  Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction , 2014 .

[8]  P. Paramasivam,et al.  Prospects for natural fibre reinforced concretes in construction , 1981 .

[9]  Abderrahim Bali,et al.  Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate , 2005 .

[10]  C. Meyer,et al.  Degradation mechanisms of natural fiber in the matrix of cement composites , 2015 .

[11]  Mohamed Boutouil,et al.  Multi-physical properties of a structural concrete incorporating short flax fibers , 2017 .

[12]  M. Arslan Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement , 2016 .

[13]  Silvester Ochieng Abuodha,et al.  Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete , 2018, Fibers.

[14]  M. Khelifa Effet de l'attaque sulfatique externe sur la durabilité des bétons autoplaçants , 2009 .

[15]  Surendra P. Shah,et al.  Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials , 1995 .

[16]  M. F. Kotkata,et al.  Thermo-physical properties of nanostructured lightweight fiber reinforced cementitious composites , 2016 .

[17]  H. Akil,et al.  The effects of polypropylene fibers on the properties of reinforced concrete structures , 2012 .

[18]  Libo Yan,et al.  Dynamic and static properties of flax fibre reinforced polymer tube confined coir fibre reinforced concrete , 2014 .

[19]  J. Bréard,et al.  Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites , 2007 .

[20]  Cengiz Duran Atiş,et al.  The durability properties of polypropylene fiber reinforced fly ash concrete , 2011 .

[21]  Eduardo Júlio,et al.  Influence of fibres on the mechanical behaviour of fibre reinforced concrete matrixes , 2017 .

[22]  I. N. Grubeša,et al.  Effect of hemp fibers on fire resistance of concrete , 2018, Construction and Building Materials.

[23]  Lijing Wang,et al.  Compressive and flexural properties of hemp fiber reinforced concrete , 2004 .

[24]  Julien Chamoin Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation , 2013 .

[25]  Nikos Leterrier,et al.  Sulfate ingress in Portland cement , 2010 .

[26]  J. Lizarazo-Marriaga,et al.  Modulus of elasticity and Poisson's ratio of fiber-reinforced concrete in Colombia from ultrasonic pulse velocities , 2019, Journal of Building Engineering.

[27]  W. Müllauer,et al.  Sulfate attack expansion mechanisms , 2013 .

[28]  Xavier Brunetaud,et al.  Étude de l'influence de différents paramètres et de leurs interactions sur la cinétique de l'amplitude de la réaction sulfatique interne au béton , 2005 .

[29]  Kévin Beck Etude des propriétés hydriques et des mécanismes d'altération de pierres calcaires à forte porosité , 2006 .

[30]  Michèle Queneudec,et al.  Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties , 2008 .

[31]  M. John,et al.  Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites , 2008 .

[32]  C. Pagnoux,et al.  Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction , 2008 .

[33]  Giovanni Dotelli,et al.  Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings. , 2013, Environmental science & technology.

[34]  K. Pickering,et al.  A review of recent developments in natural fibre composites and their mechanical performance , 2016 .

[35]  M. Schlegel,et al.  Degradation processes of reinforced concretes by combined sulfate–phosphate attack , 2015 .

[36]  César Niyigena Variabilité des performances de bétons de chanvre en fonction des caractéristiques de la chènevotte produite en Auvergne , 2016 .

[37]  Luigi Biolzi,et al.  The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete , 2018 .

[38]  H. Savastano,et al.  Plant fibre reinforced cement components for roofing , 1999 .

[39]  Surendra P. Shah,et al.  Processing of high-performance fiber-reinforced cement-based composites , 2010 .

[40]  David Hui,et al.  Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties , 2015 .

[41]  Samy Mezhoud,et al.  Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses , 2020 .

[42]  E. Choi,et al.  Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete , 2016 .

[43]  D. Damidot,et al.  Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation , 2007 .

[44]  N. Ayed,et al.  Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites , 2013 .

[45]  Jian-kang Chen,et al.  Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions , 2013 .

[46]  M. Ali Seismic performance of coconut-fibre-reinforced-concrete columns with different reinforcement configurations of coconut-fibre ropes , 2014 .

[47]  A. Shahzad Hemp fiber and its composites – a review , 2012 .