A new fractal dimension: The topological Hausdorff dimension
暂无分享,去创建一个
Rich'ard Balka | M'arton Elekes | Zolt'an Buczolich | Márton Elekes | Z. Buczolich | Rich'ard Balka | R. Balka
[1] Y. Peres,et al. Limsup Random Fractals , 2000 .
[2] Márton Elekes,et al. Topological Hausdorff dimension and level sets of generic continuous functions on fractals , 2011, 1108.5578.
[3] L. Olsen,et al. On the box dimensions of graphs of typical continuous functions , 2012 .
[4] Y. Peres. Remarks on intersection-equivalence and capacity-equivalence , 1996 .
[5] Rick Durrett,et al. Connectivity properties of Mandelbrot's percolation process , 1988 .
[6] Y. Peres,et al. Brownian motion.Vol. 30. , 2010 .
[7] H. Poincaré,et al. Percolation ? , 1982 .
[8] John C. Oxtoby. 7. THE BANACH-MAZUR GAME AND BANACH CATEGORY THEOREM , 1958 .
[9] A. Kechris. Classical descriptive set theory , 1987 .
[10] The critical point of fractal percolation in three and more dimensions , 1991 .
[11] J. Fraser,et al. Dimension and measure for generic continuous images , 2012, 1209.3168.
[12] Stephen Taylor,et al. Multiple points for the sample paths of the symmetric stable process , 1966 .
[13] D. W. Hall,et al. TOPOLOGICAL ANALYSIS , 2007 .
[14] Andrea Szalavetz,et al. Hungarian Academy of Sciences , 1952, Nature.
[15] Transfinite Hausdorff dimension , 2009 .
[16] Humke,et al. THE PACKING DIMENSION OF A TYPICAL CONTINUOUS FUNCTION IS 2 , 1988 .
[17] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[18] B. Mandelbrot. Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .
[19] R. Daniel Mauldin,et al. On the Hausdorff dimension of some graphs , 1986 .
[20] John R. Harper,et al. Algebraic topology : a first course , 1982 .
[21] J. Hawkes,et al. Trees Generated by a Simple Branching Process , 1981 .
[22] J. M. Bilbao,et al. Contributions to the Theory of Games , 2005 .
[23] B. Kirchheim. Hausdorff measure and level sets of typical continuous mappings in Euclidean spaces , 1995 .
[24] William Fulton. Algebraic Topology: A First Course , 1995 .
[25] R. Oppermann. Elements of the topology of plane sets of points: by M. H. A. Newman. 221 pages, illustrations, 15 × 23 cms. New York, The Macmillan Company, 1939. Price $3.50 , 1939 .
[26] J. Hatzenbuhler,et al. DIMENSION THEORY , 1997 .
[27] Y. Peres. Intersection-equivalence of Brownian paths and certain branching processes , 1996 .
[28] A. Bruckner,et al. The level structure of a residual set of continuous functions , 1977 .
[29] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[30] R. Balka. Inductive topological Hausdorff dimensions and fibers of generic continuous functions , 2012, 1211.2872.
[31] Benoit B. Mandelbrot,et al. Les objets fractals : forme, hasard et dimension , 1989 .
[32] R. Ho. Algebraic Topology , 2022 .
[33] T. Körner. Besicovitch via Baire , 2003 .
[34] R. Lyons. Random Walks and Percolation on Trees , 1990 .
[35] J. van Mill,et al. The Infinite-Dimensional Topology of Function Spaces , 2001 .