Optimal power diagrams via function approximation
暂无分享,去创建一个
[1] H. Scheraga,et al. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[2] Qiang Du,et al. Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..
[3] Dong-Ming Yan,et al. Efficient Computation of 3D Clipped Voronoi Diagram , 2010, GMP.
[4] Ligang Liu,et al. Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation , 2014, SIAM J. Sci. Comput..
[5] Yong-Jin Liu,et al. Manifold differential evolution (MDE) , 2016, ACM Trans. Graph..
[6] Bruno Lévy,et al. Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.
[7] Xiangmin Jiao,et al. Anisotropic mesh adaptation for evolving triangulated surfaces , 2006, Engineering with Computers.
[8] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[9] Albert Cohen,et al. Greedy bisection generates optimally adapted triangulations , 2012, Math. Comput..
[10] Paul S. Heckbert,et al. A Pliant Method for Anisotropic Mesh Generation , 1996 .
[11] Mariette Yvinec,et al. Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..
[12] Wenping Wang,et al. Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh , 2012, Comput. Graph. Forum.
[13] Franz Aurenhammer,et al. A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..
[14] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[15] Bruno Lévy,et al. Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..
[16] Long Chen,et al. Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.
[17] Baining Guo,et al. Anisotropic simplicial meshing using local convex functions , 2014, ACM Trans. Graph..
[18] Lin Lu,et al. Global Optimization of Centroidal Voronoi Tessellation with Monte Carlo Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.
[19] Zhonggui Chen,et al. Approximation by piecewise polynomials on Voronoi tessellation , 2014, Graph. Model..
[20] C. Dobrzynski,et al. Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.
[21] Mariette Yvinec,et al. Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.
[22] Vincent Nivoliers,et al. Approximating Functions on a Mesh with Restricted Voronoï Diagrams , 2013, SGP '13.
[23] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[24] Shi-Qing Xin,et al. Centroidal power diagrams with capacity constraints , 2016, ACM Trans. Graph..
[25] Simona Perotto,et al. A priori anisotropic mesh adaptation driven by a higher dimensional embedding , 2017, Comput. Aided Des..
[26] Simona Perotto,et al. Anisotropic finite element mesh adaptation via higher dimensional embedding , 2015 .
[27] Rémy Prost,et al. Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.
[28] Harley Flanders,et al. Differentiation Under the Integral Sign , 1973 .
[29] B. Lévy,et al. L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.
[30] Subhash Suri,et al. Surface approximation and geometric partitions , 1994, SODA '94.
[31] Marc Alexa,et al. Mahalanobis centroidal Voronoi tessellations , 2015, Comput. Graph..
[32] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[33] Pierre Alliez,et al. Optimal voronoi tessellations with hessian-based anisotropy , 2016, ACM Trans. Graph..
[34] Bruno Lévy,et al. Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..
[35] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[36] Yang Liu,et al. Surface Approximation via Asymptotic Optimal Geometric Partition , 2017, IEEE Transactions on Visualization and Computer Graphics.
[37] Dong-Ming Yan,et al. Obtuse triangle suppression in anisotropic meshes , 2011, Comput. Aided Geom. Des..