Optimal power diagrams via function approximation

Abstract In this paper, we present a novel method for generating cell complexes with anisotropy conforming to the Hessian of an arbitrary given function. This is done by variationally optimizing the discontinuous piecewise linear approximation of the given functions over power diagrams. The resulting cell complexes corresponding to the approximations are referred to as Optimal Power Diagram (OPD). A hybrid optimization technique, coupling a modified Monte Carlo method with a local search strategy, is tailored for effectively solving the specific optimization task. In contrast to the Optimal Voronoi Tessellation (OVT) method (Budninskiy et al., 2016), our OPD method does not restrict the target functions to be convex, providing more diverse classes of tessellations of the domain. Furthermore, our OPD method generally yields smaller approximation errors than the OVT method, which uses underlaid approximants. We conduct several experiments to demonstrate the efficacy of our optimization algorithm in finding good local minima and generating high-quality anisotropic polytopal meshes.

[1]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[3]  Dong-Ming Yan,et al.  Efficient Computation of 3D Clipped Voronoi Diagram , 2010, GMP.

[4]  Ligang Liu,et al.  Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation , 2014, SIAM J. Sci. Comput..

[5]  Yong-Jin Liu,et al.  Manifold differential evolution (MDE) , 2016, ACM Trans. Graph..

[6]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[7]  Xiangmin Jiao,et al.  Anisotropic mesh adaptation for evolving triangulated surfaces , 2006, Engineering with Computers.

[8]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[9]  Albert Cohen,et al.  Greedy bisection generates optimally adapted triangulations , 2012, Math. Comput..

[10]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[11]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[12]  Wenping Wang,et al.  Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh , 2012, Comput. Graph. Forum.

[13]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[14]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[15]  Bruno Lévy,et al.  Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..

[16]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[17]  Baining Guo,et al.  Anisotropic simplicial meshing using local convex functions , 2014, ACM Trans. Graph..

[18]  Lin Lu,et al.  Global Optimization of Centroidal Voronoi Tessellation with Monte Carlo Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.

[19]  Zhonggui Chen,et al.  Approximation by piecewise polynomials on Voronoi tessellation , 2014, Graph. Model..

[20]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.

[21]  Mariette Yvinec,et al.  Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.

[22]  Vincent Nivoliers,et al.  Approximating Functions on a Mesh with Restricted Voronoï Diagrams , 2013, SGP '13.

[23]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[24]  Shi-Qing Xin,et al.  Centroidal power diagrams with capacity constraints , 2016, ACM Trans. Graph..

[25]  Simona Perotto,et al.  A priori anisotropic mesh adaptation driven by a higher dimensional embedding , 2017, Comput. Aided Des..

[26]  Simona Perotto,et al.  Anisotropic finite element mesh adaptation via higher dimensional embedding , 2015 .

[27]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Harley Flanders,et al.  Differentiation Under the Integral Sign , 1973 .

[29]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[30]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[31]  Marc Alexa,et al.  Mahalanobis centroidal Voronoi tessellations , 2015, Comput. Graph..

[32]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[33]  Pierre Alliez,et al.  Optimal voronoi tessellations with hessian-based anisotropy , 2016, ACM Trans. Graph..

[34]  Bruno Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[35]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[36]  Yang Liu,et al.  Surface Approximation via Asymptotic Optimal Geometric Partition , 2017, IEEE Transactions on Visualization and Computer Graphics.

[37]  Dong-Ming Yan,et al.  Obtuse triangle suppression in anisotropic meshes , 2011, Comput. Aided Geom. Des..