Paradigms Admitting Superunitary Behaviour in Parallel Computation

The phenomenon of a disproportionate decrease in execution time of p2 over p1 processors executing a task in parallel, where p2 > p1, is referred to as superunitary speedup. An analogous phenomenon that we call superunitary ‘success ratio’ occurs in dealing with tasks that can either succeed or fail, when there is a disproportionate increase in the success of p2 over p1 processors. We identify a range of conditions which may lead to superunitary speedup or superunitary success ratio, and propose several new paradigms for problems which admit such superunitary behaviour. Our results suggest that a new theory of parallel computation may be required to accommodate these new paradigms.

[1]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[2]  Oliver Vornberger,et al.  Superlinear Speedup for Parallel Backtracking , 1987, ICS.

[3]  Charles E. McDowell,et al.  Modeling Speedup greater than n , 1989, International Conference on Parallel Processing.

[4]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[5]  Justin R. Smith The Design and Analysis of Parallel Algorithms , 1993 .

[6]  Paul B. Schneck Superlinear Speed-Up and the Halting Problem , 1986, Softw. Pract. Exp..

[7]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[8]  D. Parkinson Parallel efficiency can be greater than unity , 1986, Parallel Comput..

[9]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[10]  D. Fischer,et al.  On superlinear speedups , 1991, Parallel Comput..

[11]  Edward F. Gehringer,et al.  Superlinear Speedup Through Randomized Algorithms , 1985, International Conference on Parallel Processing.

[12]  R. Janßen A note on superlinear speedup , 1987, Parallel Comput..

[13]  Vance Faber,et al.  Superlinear speedup of an efficient sequential algorithm is not possible , 1986, Parallel Comput..

[14]  Selim G. Akl,et al.  Data-Movement-Intensive Problems: Two Folk Theorems in Parallel Computation Revisited , 1992, Theor. Comput. Sci..

[15]  Vipin Kumar,et al.  On the Efficiency of Parallel Backtracking , 1993, IEEE Trans. Parallel Distributed Syst..

[16]  Michael J. Quinn,et al.  Designing Efficient Algorithms for Parallel Computers , 1987 .

[17]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[18]  Richard Cole,et al.  Faster Optimal Parallel Prefix Sums and List Ranking , 2011, Inf. Comput..

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[21]  Sartaj Sahni,et al.  Anomalies in Parallel Branch-and-Bound Algorithms , 1984 .