Reversible jump Markov chain Monte Carlo

To appear to MCMC handbook, S. P. Brooks, A. Gelman, G. Jones and X.-L. Meng (eds), Chapman & Hall.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[3]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[4]  B. Ripley Modelling Spatial Patterns , 1977 .

[5]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[6]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[7]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[8]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[9]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[10]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[11]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[12]  Michael I. Miller,et al.  Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition , 1995, IEEE Trans. Signal Process..

[13]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[14]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[15]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[16]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[17]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[18]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[19]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[20]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[21]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[22]  Christian P. Robert,et al.  MCMC Convergence Diagnostics : A « Reviewww » , 1998 .

[23]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[24]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[25]  A. George,et al.  A Bayesian Approach to Ordering Gene Markers , 1999, Biometrics.

[26]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[27]  Geoff K. Nicholls,et al.  Perfect simulation for sample-based inference , 1999 .

[28]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[29]  Yanan Fan,et al.  Bayesian modelling of prehistoric corbelled domes , 2000 .

[30]  Cong Han,et al.  MCMC Methods for Computing Bayes Factors: A Comparative Review , 2000 .

[31]  M. Stephens Dealing with label switching in mixture models , 2000 .

[32]  Nando de Freitas,et al.  Reversible Jump MCMC Simulated Annealing for Neural Networks , 2000, UAI.

[33]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[34]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[35]  Christian P. Robert,et al.  Reversible Jump MCMC Converging to Birth-and-Death MCMC and More General Continuous Time Samplers , 2001 .

[36]  Faming Liang,et al.  A Theory for Dynamic Weighting in Monte Carlo Computation , 2001 .

[37]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[38]  S. Frühwirth-Schnatter Markov chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models , 2001 .

[39]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[40]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[41]  Petar M. Djuric,et al.  Model selection by MCMC computation , 2001, Signal Process..

[42]  S. Godsill On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .

[43]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[44]  Petros Dellaportas,et al.  On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..

[45]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[46]  Luca Tardella,et al.  A geometric approach to transdimensional markov chain monte carlo , 2003 .

[47]  Peter J.T. Verheijen,et al.  Model selection: an overview of practices in chemical engineering , 2003 .

[48]  P. Dellaportas,et al.  Bayesian variable and link determination for generalised linear models , 2003 .

[49]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[50]  S. Brooks,et al.  Classical model selection via simulated annealing , 2003, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[51]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[52]  S A Sisson,et al.  Bayesian Point Estimation of Quantitative Trait Loci , 2004, Biometrics.

[53]  Radford M. Neal Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better , 2004, math/0407281.

[54]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[55]  Ruth King,et al.  A Classical Study of Catch-Effort Models for Hector's Dolphins , 2004 .

[56]  Scott A. Sisson,et al.  Trans-dimensional Markov chains : A decade of progress and future perspectives , 2004 .

[57]  David J Nott,et al.  Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models , 2004 .

[58]  J. Berger,et al.  Training samples in objective Bayesian model selection , 2004, math/0406460.

[59]  A. Doucet,et al.  Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes , 2004, Journal of Time Series Analysis.

[60]  P. Green,et al.  Bayesian Variable Selection and the Swendsen-Wang Algorithm , 2004 .

[61]  Darryn Bryant,et al.  A Generalized Markov Sampler , 2004 .

[62]  M. Hurn,et al.  Improving the acceptance rate of reversible jump MCMC proposals , 2004 .

[63]  Scott A. Sisson,et al.  Transdimensional Markov Chains , 2005 .

[64]  J. Kadane,et al.  Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .

[65]  M. Vannucci,et al.  Bayesian Variable Selection in Clustering High-Dimensional Data , 2005 .

[66]  Petros Dellaportas,et al.  Multivariate mixtures of normals with unknown number of components , 2006, Stat. Comput..

[67]  Stephen P. Brooks,et al.  Perfect Forward Simulation via Simulated Tempering , 2006 .

[68]  Scott A. Sisson,et al.  A distance-based diagnostic for trans-dimensional Markov chains , 2007, Stat. Comput..

[69]  A. P. Dawid,et al.  Bayesian Model Averaging and Model Search Strategies , 2007 .

[70]  Ajay Jasra,et al.  Population-Based Reversible Jump Markov Chain Monte Carlo , 2007, 0711.0186.

[71]  Stephen P. Brooks,et al.  Adaptive Proposal Construction for Reversible Jump MCMC , 2008 .

[72]  Arnaud Doucet,et al.  Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..

[73]  Petros Dellaportas,et al.  A general proposal construction for reversible jump MCMC , 2009 .

[74]  Yanan Fan,et al.  Towards automating model selection for a mark–recapture–recovery analysis , 2009 .

[75]  Miquel Trias,et al.  Delayed rejection schemes for efficient Markov-Chain Monte-Carlo sampling of multimodal distributions , 2009, 0904.2207.

[76]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[77]  Stephen G. Walker A Gibbs Sampling Alternative to Reversible Jump MCMC , 2009 .

[78]  R. McCulloch,et al.  Variable selection via Gibbs sampling , 1993 .

[79]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[80]  Hukushima Koji Recent Developments in Markov-chain Monte Carlo Method , 2010 .