Anisotropic Mesh Adaptation and Movement
暂无分享,去创建一个
[1] Keith Miller,et al. Moving Finite Elements. I , 1981 .
[2] Graham F. Carey,et al. Computational grids : generation, adaptation, and solution strategies , 1997 .
[3] J. Remacle,et al. Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .
[4] Patrick M. Knupp,et al. A Framework for Variational Grid Generation: Conditioning the Jacobian Matrix with Matrix Norms , 1999, SIAM J. Sci. Comput..
[5] P. L. George,et al. Automatic mesh generation and finite element computation , 1996 .
[6] Pavel B. Bochev,et al. Analysis and computation of adaptive moving grids by deformation , 1996 .
[7] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[8] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[9] Miloš Zlámal,et al. On the finite element method , 1968 .
[10] H. G. Burchard,et al. Splines (with optimal knots) are better , 1974 .
[11] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[12] P. Zegeling,et al. Adaptive moving mesh computations for reaction--diffusion systems , 2004 .
[13] P. Jamet. Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .
[14] J. Castillo. Mathematical Aspects of Numerical Grid Generation , 1991, Frontiers in Applied Mathematics.
[15] Robert D. Russell,et al. Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..
[16] J. Moser,et al. On a partial differential equation involving the Jacobian determinant , 1990 .
[17] J. Brackbill,et al. Adaptive zoning for singular problems in two dimensions , 1982 .
[18] P. Knupp,et al. Mesh generation using vector-fields , 1995 .
[19] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[20] A. M. Winslow. Adaptive-mesh zoning by the equipotential method , 1981 .
[21] Martin Berzins. A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..
[22] Gerd Kunert,et al. A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..
[23] Weizhang Huang,et al. Variational mesh adaptation II: error estimates and monitor functions , 2003 .
[24] M. Baines. Moving finite elements , 1994 .
[25] Peter R. Eiseman. Solution adaptive grid generation , 1983 .
[26] Kunibert G. Siebert,et al. An a posteriori error estimator for anisotropic refinement , 1996 .
[27] N. Shenk,et al. Uniform error estimates for certain narrow Lagrange finite elements , 1994 .
[28] H. Kober. On the arithmetic and geometric means and on Hölder’s inequality , 1958 .
[29] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[30] Weizhang Huang,et al. Variational mesh adaptation: isotropy and equidistribution , 2001 .
[31] Tao Tang,et al. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..
[32] P. Eiseman. Grid Generation for Fluid Mechanics Computations , 1985 .
[33] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[34] Patrick J. Roache,et al. Variational grid generation , 1986 .
[35] Thomas Y. Hou,et al. An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .
[36] Joe F. Thompson,et al. Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review , 1982 .
[37] Long Chen,et al. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..
[38] V. Dolejší. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .
[39] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[40] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[41] Weizhang Huang. Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .
[42] George Beckett,et al. A moving mesh finite element method for the two-dimensional Stefan problems , 2001 .
[43] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[44] Paul Glaister,et al. Generation of Arbitrary Lagrangian–Eulerian (ALE) velocities, based on monitor functions, for the solution of compressible fluid equations , 2005 .
[45] M WinslowAlan. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .
[46] Rob Hagmeijer. Grid adaption based on modified anisotropic diffusion equations formulated in the parametric domain , 1994 .
[47] Yu. G. Reshetnyak. Space mappings with bounded distortion , 1967 .
[48] P. Thomas,et al. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .
[49] Gerd Kunert,et al. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes , 2000, Numerische Mathematik.
[50] Weizhang Huang,et al. Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .
[51] Scott A. Mitchell,et al. Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..
[52] G. Kunerta. Mesh Shape and Anisotropic Elements: Theory and Practice , 2007 .
[53] Weizhang Huang,et al. Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .
[54] Robert D. Russell,et al. Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..
[55] Weizhang Huang,et al. Approaches for generating moving adaptive meshes: location versus velocity , 2003 .
[56] Weiqing Ren,et al. An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .
[57] J. Hansen,et al. Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .
[58] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[59] P. Eiseman,et al. Adaptive grid generation , 1987 .
[60] John M. Stockie,et al. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..
[61] Bharat K. Soni,et al. Handbook of Grid Generation , 1998 .
[62] Christoph Pflaum,et al. On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .
[63] Kenji Shimada,et al. High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.
[64] Guojun Liao,et al. Adaptive grid generation based onthe least-squares finite-element method , 2004 .
[65] Weizhang Huang,et al. A high dimensional moving mesh strategy , 1998 .
[66] Weizhang Huang. CONVERGENCE ANALYSIS OF FINITE ELEMENT SOLUTION OF ONE-DIMENSIONAL SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS ON EQUIDISTRIBUTING MESHES , 2005 .
[67] Peter K. Jimack,et al. A moving mesh finite element algorithm for fluid flow problems with moving boundaries , 2005 .
[68] C. D. Boor,et al. Good approximation by splines with variable knots. II , 1974 .
[69] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[70] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[71] Paul S. Heckbert,et al. A Pliant Method for Anisotropic Mesh Generation , 1996 .
[72] M. Krízek,et al. On the maximum angle condition for linear tetrahedral elements , 1992 .
[73] Weizhang Huang,et al. Analysis Of Moving Mesh Partial Differential Equations With Spatial Smoothing , 1997 .
[74] Patrick M. Knupp,et al. Jacobian-Weighted Elliptic Grid Generation , 1996, SIAM J. Sci. Comput..
[75] Ruo Li,et al. Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..
[76] A. Dvinsky. Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .
[77] Yu. G. Reshetnyak. Space mappings with bounded distortion , 1967 .
[78] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[79] Joseph E. Flaherty,et al. Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .
[80] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .
[81] John A. Gregory,et al. Interpolation remainder theory from taylor expansions on triangles , 1975 .
[82] Joe F. Thompson,et al. Numerical grid generation: Foundations and applications , 1985 .
[83] Guojun Liao,et al. A new approach to grid generation , 1992 .
[84] Linda R. Petzold,et al. Observations on an adaptive moving grid method for one-dimensional systems of partial differential equations , 1987 .
[85] Weizhang Huang,et al. A two-dimensional moving finite element method with local refinement based on a posteriori error estimates , 2003 .
[86] Pingwen Zhang,et al. Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .
[87] Joe F. Thompson. A survey of dynamically-adaptive grids in the numerical solution of partial differential equations , 1984 .
[88] N P Weatherill,et al. Structured and unstructured grid generation. , 1992, Critical reviews in biomedical engineering.
[89] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[90] R. K. Smith,et al. Mesh Smoothing Using A Posteriori Error Estimates , 1997 .
[91] Gerd Kunert,et al. A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .
[92] Design And Application Of A Gradient-Weighted Moving Finite Element Code, Part I, In 1-D , 1998 .
[93] Man Mohan Rai,et al. The use of solution adaptive grids in solving partial differential equations , 1982 .
[94] LongChen,et al. OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .
[95] Keith Miller,et al. Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..
[96] E. Dorfi,et al. Simple adaptive grids for 1-d initial value problems , 1987 .
[97] P. George,et al. Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .
[98] J. R. Cash,et al. Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .
[99] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.
[100] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[101] WEIZHANG HUANG,et al. A Moving Mesh Method Based on the Geometric Conservation Law , 2002, SIAM J. Sci. Comput..
[102] W. C. Rheinboldt,et al. The hypercircle in mathematical physics , 1958 .
[103] Patrick M. Knupp,et al. Fundamentals of Grid Generation , 2020 .
[104] B. Joe,et al. Relationship between tetrahedron shape measures , 1994 .
[105] Mark S. Shephard,et al. Boundary Layer Meshing for Viscous Flows in Complex Domains , 1998, IMR.
[106] Guojun Liao,et al. A moving grid finite‐element method using grid deformation , 1995 .
[107] V. M. Fomin,et al. Methods for the construction of moving grids for problems of fluid dynamics with big deformations , 1976 .
[108] Weizhang Huang,et al. Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..
[109] E. F. D’Azevedo,et al. Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..
[110] Gerd Kunert,et al. An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.
[111] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[112] J. Brackbill. An adaptive grid with directional control , 1993 .
[113] Vladimir D. Liseikin,et al. Grid Generation Methods , 1999 .
[114] R. B. Simpson. Anisotropic mesh transformations and optimal error control , 1994 .
[115] Pingwen Zhang,et al. A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .
[116] J. Mackenzie,et al. A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .
[117] Robert D. Russell,et al. Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .