Anisotropic Mesh Adaptation and Movement

These lecture notes were prepared for the workshop on Adaptive Method, Theory and Application organized

[1]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[2]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[3]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[4]  Patrick M. Knupp,et al.  A Framework for Variational Grid Generation: Conditioning the Jacobian Matrix with Matrix Norms , 1999, SIAM J. Sci. Comput..

[5]  P. L. George,et al.  Automatic mesh generation and finite element computation , 1996 .

[6]  Pavel B. Bochev,et al.  Analysis and computation of adaptive moving grids by deformation , 1996 .

[7]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[8]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[9]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[10]  H. G. Burchard,et al.  Splines (with optimal knots) are better , 1974 .

[11]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[12]  P. Zegeling,et al.  Adaptive moving mesh computations for reaction--diffusion systems , 2004 .

[13]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[14]  J. Castillo Mathematical Aspects of Numerical Grid Generation , 1991, Frontiers in Applied Mathematics.

[15]  Robert D. Russell,et al.  Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..

[16]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[17]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[18]  P. Knupp,et al.  Mesh generation using vector-fields , 1995 .

[19]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[20]  A. M. Winslow Adaptive-mesh zoning by the equipotential method , 1981 .

[21]  Martin Berzins A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator , 1998, SIAM J. Sci. Comput..

[22]  Gerd Kunert,et al.  A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..

[23]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[24]  M. Baines Moving finite elements , 1994 .

[25]  Peter R. Eiseman Solution adaptive grid generation , 1983 .

[26]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[27]  N. Shenk,et al.  Uniform error estimates for certain narrow Lagrange finite elements , 1994 .

[28]  H. Kober On the arithmetic and geometric means and on Hölder’s inequality , 1958 .

[29]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[30]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[31]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[32]  P. Eiseman Grid Generation for Fluid Mechanics Computations , 1985 .

[33]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[34]  Patrick J. Roache,et al.  Variational grid generation , 1986 .

[35]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[36]  Joe F. Thompson,et al.  Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review , 1982 .

[37]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[38]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[39]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[40]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[41]  Weizhang Huang Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .

[42]  George Beckett,et al.  A moving mesh finite element method for the two-dimensional Stefan problems , 2001 .

[43]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[44]  Paul Glaister,et al.  Generation of Arbitrary Lagrangian–Eulerian (ALE) velocities, based on monitor functions, for the solution of compressible fluid equations , 2005 .

[45]  M WinslowAlan Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[46]  Rob Hagmeijer Grid adaption based on modified anisotropic diffusion equations formulated in the parametric domain , 1994 .

[47]  Yu. G. Reshetnyak Space mappings with bounded distortion , 1967 .

[48]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[49]  Gerd Kunert,et al.  Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes , 2000, Numerische Mathematik.

[50]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[51]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[52]  G. Kunerta Mesh Shape and Anisotropic Elements: Theory and Practice , 2007 .

[53]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[54]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[55]  Weizhang Huang,et al.  Approaches for generating moving adaptive meshes: location versus velocity , 2003 .

[56]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[57]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[58]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[59]  P. Eiseman,et al.  Adaptive grid generation , 1987 .

[60]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[61]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[62]  Christoph Pflaum,et al.  On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .

[63]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.

[64]  Guojun Liao,et al.  Adaptive grid generation based onthe least-squares finite-element method , 2004 .

[65]  Weizhang Huang,et al.  A high dimensional moving mesh strategy , 1998 .

[66]  Weizhang Huang CONVERGENCE ANALYSIS OF FINITE ELEMENT SOLUTION OF ONE-DIMENSIONAL SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS ON EQUIDISTRIBUTING MESHES , 2005 .

[67]  Peter K. Jimack,et al.  A moving mesh finite element algorithm for fluid flow problems with moving boundaries , 2005 .

[68]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[69]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[70]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[71]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[72]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[73]  Weizhang Huang,et al.  Analysis Of Moving Mesh Partial Differential Equations With Spatial Smoothing , 1997 .

[74]  Patrick M. Knupp,et al.  Jacobian-Weighted Elliptic Grid Generation , 1996, SIAM J. Sci. Comput..

[75]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[76]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[77]  Yu. G. Reshetnyak Space mappings with bounded distortion , 1967 .

[78]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[79]  Joseph E. Flaherty,et al.  Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .

[80]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[81]  John A. Gregory,et al.  Interpolation remainder theory from taylor expansions on triangles , 1975 .

[82]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[83]  Guojun Liao,et al.  A new approach to grid generation , 1992 .

[84]  Linda R. Petzold,et al.  Observations on an adaptive moving grid method for one-dimensional systems of partial differential equations , 1987 .

[85]  Weizhang Huang,et al.  A two-dimensional moving finite element method with local refinement based on a posteriori error estimates , 2003 .

[86]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[87]  Joe F. Thompson A survey of dynamically-adaptive grids in the numerical solution of partial differential equations , 1984 .

[88]  N P Weatherill,et al.  Structured and unstructured grid generation. , 1992, Critical reviews in biomedical engineering.

[89]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[90]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[91]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[92]  Design And Application Of A Gradient-Weighted Moving Finite Element Code, Part I, In 1-D , 1998 .

[93]  Man Mohan Rai,et al.  The use of solution adaptive grids in solving partial differential equations , 1982 .

[94]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[95]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[96]  E. Dorfi,et al.  Simple adaptive grids for 1-d initial value problems , 1987 .

[97]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[98]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[99]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[100]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[101]  WEIZHANG HUANG,et al.  A Moving Mesh Method Based on the Geometric Conservation Law , 2002, SIAM J. Sci. Comput..

[102]  W. C. Rheinboldt,et al.  The hypercircle in mathematical physics , 1958 .

[103]  Patrick M. Knupp,et al.  Fundamentals of Grid Generation , 2020 .

[104]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[105]  Mark S. Shephard,et al.  Boundary Layer Meshing for Viscous Flows in Complex Domains , 1998, IMR.

[106]  Guojun Liao,et al.  A moving grid finite‐element method using grid deformation , 1995 .

[107]  V. M. Fomin,et al.  Methods for the construction of moving grids for problems of fluid dynamics with big deformations , 1976 .

[108]  Weizhang Huang,et al.  Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..

[109]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[110]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[111]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[112]  J. Brackbill An adaptive grid with directional control , 1993 .

[113]  Vladimir D. Liseikin,et al.  Grid Generation Methods , 1999 .

[114]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[115]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[116]  J. Mackenzie,et al.  A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .

[117]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .