Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer

Tuning interlayer electron hopping in (SrRuO3)1/(SrTiO3)N superlattices leads to an eightfold magnetic anisotropy. Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3)N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications.

[1]  M. Gabay,et al.  A spin–orbit playground: surfaces and interfaces of transition metal oxides , 2018, Reports on progress in physics. Physical Society.

[2]  D. Muller,et al.  Ferromagnetism and Conductivity in Atomically Thin SrRuO3 , 2016, Physical Review X.

[3]  Zhuoyu Chen,et al.  Strain-tunable magnetism at oxide domain walls , 2019, Nature Physics.

[4]  Hyunsoo Yang,et al.  Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures , 2018, Nature Materials.

[5]  Vincent Garcia,et al.  Giant topological Hall effect in correlated oxide thin films , 2018, Nature Physics.

[6]  Z. Zhong,et al.  Complex magnetic order in nickelate slabs , 2018, Nature Physics.

[7]  C. Batista,et al.  Giant magnetic response of a two-dimensional antiferromagnet , 2018, Nature Physics.

[8]  William Ratcliff,et al.  reductus: a stateless Python data reduction service with a browser front end , 2018, Journal of Applied Crystallography.

[9]  Hanghui Chen Magnetically driven orbital-selective insulator–metal transition in double perovskite oxides , 2018, npj Quantum Materials.

[10]  G. Cao,et al.  The challenge of spin–orbit-tuned ground states in iridates: a key issues review , 2017, Reports on progress in physics. Physical Society.

[11]  K. Stone,et al.  Tuning Perpendicular Magnetic Anisotropy by Oxygen Octahedral Rotations in (La_{1-x}Sr_{x}MnO_{3})/(SrIrO_{3}) Superlattices. , 2017, Physical review letters.

[12]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[13]  Y. Tokura,et al.  Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer , 2016, Science Advances.

[14]  H. Kurata,et al.  Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. , 2016, Nature materials.

[15]  K. Held,et al.  Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. , 2016, Nature materials.

[16]  R. Birgeneau,et al.  Atomic-scale control of magnetic anisotropy via novel spin–orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices , 2016, Proceedings of the National Academy of Sciences.

[17]  H. Kumigashira,et al.  Thickness-dependent magnetic properties and strain-induced orbital magnetic moment in SrRuO 3 thin films , 2015, 1505.05692.

[18]  H. Takagi,et al.  Engineering a Spin-Orbital Magnetic Insulator by Tailoring Superlattices. , 2014, Physical review letters.

[19]  K. V. Shanavas,et al.  Theoretical model for Rashba spin-orbit interaction in d electrons , 2014 .

[20]  J. Eckstein,et al.  Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices , 2014, Nature Communications.

[21]  N. Browning,et al.  Interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices. , 2013, Physical review letters.

[22]  M. Burghard,et al.  Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene. , 2013, Physical review letters.

[23]  D. Schlom,et al.  Quasiparticle mass enhancement and temperature dependence of the electronic structure of ferromagnetic SrRuO3 thin films. , 2012, Physical review letters.

[24]  X. S. Wu,et al.  Magnetic ordering and structural phase transitions in a strained ultrathin SrRuO3/SrTiO3 superlattice. , 2012, Physical review letters.

[25]  James M. Rondinelli,et al.  Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery , 2012 .

[26]  F. Heinrich,et al.  Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials , 2012 .

[27]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[28]  J. Junquera,et al.  Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. , 2012, Physical review letters.

[29]  S. Cheong,et al.  Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3. , 2011, Physical review letters.

[30]  H. Hwang,et al.  Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface , 2011, 1108.3150.

[31]  J. Mannhart,et al.  Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces , 2011, 1105.0235.

[32]  P. Ryan,et al.  Control of octahedral rotations in (LaNiO{sub 3}){sub n}/(SrMnO{sub 3}){sub m} superlattices , 2011, 1102.3473.

[33]  P. J. Ryan,et al.  Quantifying octahedral rotations in strained perovskite oxide films , 2010, 1002.1317.

[34]  S. Sakai,et al.  Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.

[35]  Y. Chang,et al.  Fundamental thickness limit of itinerant ferromagnetic SrRuO(3) thin films. , 2009, Physical review letters.

[36]  M. Beasley,et al.  Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3 , 2008, 0811.0384.

[37]  K. P. Sinha,et al.  On the: Theory of Superexchange Interaction , 2004 .

[38]  R. Gross,et al.  Evidence for canted antiferromagnetism in lightly doped La 1 − x Sr x MnO 3 , 2001 .

[39]  J. Renard,et al.  Weak ferromagnetism in LaMnO 3 , 1999 .

[40]  J. Coey,et al.  Weak ferromagnetism in LaMnO3 , 1999 .

[41]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[42]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[43]  G. Sawatzky,et al.  Interplay between spin, charge and orbital degrees of freedom in magnetic oxides , 1997 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  P. de Gennes,et al.  Effects of Double Exchange in Magnetic Crystals , 1960 .

[48]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[49]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[50]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .

[51]  E. Dzialoshinskii,et al.  Thermodynamic Theory of " Weak " Ferromagnetism In Antiferromagnetic Substances , 2022 .