Threshold current density in strained layer In/sub x/Ga/sub 1-x/As-GaAs quantum-well heterostructure lasers

The authors consider the transparency carrier density in ideal and practical strained layer In/sub x/Ga/sub 1-x/As-GaAs quantum-well heterostructure lasers. The transparency carrier density in practical structures is then related to transparency current density using realistic values for spontaneous recombination rates. These parameters are incorporated with representative structural parameters into a nonlinear model for gain in a quantum-well laser, in order to provide a complete model for the laser threshold current density in strained layer In/sub x/Ga/sub 1-x/As-GaAs quantum-well heterostructure lasers. These results are then compared and contrasted with experimental laser results from several laboratories. >

[1]  Larry A. Coldren,et al.  Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .

[2]  James J. Coleman,et al.  High power continuous operation of laser diodes at 1064 nm , 1991 .

[3]  James J. Coleman,et al.  Characterization and determination of the band‐gap discontinuity of the InxGa1−xAs/GaAs pseudomorphic quantum well , 1991 .

[4]  James J. Coleman,et al.  Antiguiding in narrow stripe gain‐guided InGaAs‐GaAs strained‐layer lasers , 1991 .

[5]  James J. Coleman,et al.  Anomalous length dependence of threshold for thin quantum well AlGaAs diode lasers , 1986 .

[6]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[7]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[8]  H. Choi,et al.  InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency , 1990 .

[9]  Role of GaAs bounding layers in improving OMVPE growth and performance of strained-layer inGaAs/AIGaAs quantum-well diode lasers , 1991 .

[10]  R. Olshansky,et al.  Carrier lifetime measurement for determination of recombination rates and doping levels of III‐V semiconductor light sources , 1982 .

[11]  Francoise Chatenoud,et al.  Extremely low threshold current strained InGaAs/AlGaAs lasers by molecular beam epitaxy , 1991 .

[12]  James J. Coleman,et al.  Dependence of threshold current density on quantum well composition for strained-layer InGaAs-GaAs lasers by metalorganic chemical vapor deposition , 1989 .

[13]  James J. Coleman,et al.  High-power phase-locked InGaAs strained-layer quantum well heterostructure periodic laser array , 1988 .

[14]  Maurice Bernard,et al.  Laser Conditions in Semiconductors , 1961, 1961.

[15]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[16]  C. M. Wayman,et al.  Ethyldimethylindium for the growth of InGaAs‐GaAs strained‐layer lasers by metalorganic chemical vapor deposition , 1989 .

[17]  Takeshi Kamiya,et al.  Recombination lifetime of carriers in GaAs‐GaAlAs quantum wells near room temperature , 1985 .

[18]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[19]  R. Olshansky,et al.  Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources , 1984 .

[20]  James J. Coleman,et al.  InGaAs-GaAs Strained Layer Quantum Well Buried Heterostructure Lasers (λ> 1 μm) by Metalorganic Chemical Vapor Deposition , 1989, Quantum Wells for Optics and Optoelectronics.

[21]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[22]  Eli Yablonovitch,et al.  Band structure engineering of semiconductor lasers for optical communications , 1988 .

[23]  L. Curtis,et al.  Highly efficient 978 nm dipole-pumped erbium-doped fibre amplifier with 24 dB gain , 1989 .

[24]  J. Coleman,et al.  Viable strained-layer laser at λ=1100 nm , 1990 .

[25]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .