Scalable Parallel Micromagnetic Solvers for

A parallel finite element micromagnetics package has been implemented, that is highly scalable, easily portable and combines dierent solvers for the micromagnetic equations. The implementation is based on the standard Galerkin discretization on tetrahedral meshes with linear basis functions. A static energy minimization, a dynamic time integration, and the nudged elastic band method have been implemented. The details of the implementation and some aspects of the optimization are discussed and timing and speedup results are given. Nucleation and magnetization reversal processes in permalloy nanodots are investigated with this micromagnetics package.

[1]  Werner Scholz,et al.  Mesh refinement in FE-micromagnetics for multi-domain Nd2Fe14B particles , 1999 .

[2]  V. Novosad,et al.  Spin excitations of magnetic vortices in ferromagnetic nanodots. , 2002 .

[3]  John G. Lewis Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms , 1982, TOMS.

[4]  J. L. Blue,et al.  Using multipoles decreases computation time for magnetostatic self-energy , 1991 .

[5]  Werner Scholz,et al.  Time resolved micromagnetics using a preconditioned time integration method , 2002 .

[6]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[7]  Roberto Zivieri,et al.  Magnetic properties of submicron circular permalloy dots , 2002 .

[8]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[9]  S. W. Yuan,et al.  Fast adaptive algorithms for micromagnetics , 1992 .

[10]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[11]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[12]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[13]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[14]  Werner Scholz,et al.  Transition from single-domain to vortex state in soft magnetic cylindrical nanodots , 2002 .

[15]  Werner Scholz,et al.  A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems , 2002 .

[16]  Ernst P. Mücke,et al.  Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.

[17]  D. Lindholm,et al.  Three-dimensional magnetostatic fields from point-matched integral equations with linearly varying scalar sources , 1984 .

[18]  P. Brown,et al.  Reduced storage matrix methods in stiff ODE systems , 1989, Conference on Numerical Ordinary Differential Equations.

[19]  T. R. Koehler,et al.  Hybrid FEM-BEM method for fast micromagnetic calculations , 1997 .

[20]  D. R. Fredkin,et al.  Finite element methods for micromagnetics , 1992 .

[21]  Peter Bastian Load Balancing for Adaptive Multigrid Methods , 1998, SIAM J. Sci. Comput..

[22]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[23]  Detlef Heitmann,et al.  Stray-field investigation on permalloy nanodisks , 2001 .

[24]  Werner Scholz,et al.  The effect of the cell size in Langevin micromagnetic simulations , 2002 .

[25]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[26]  R. Cowburn,et al.  Single-Domain Circular Nanomagnets , 1999 .

[27]  B. A. Ivanov,et al.  Eigenfrequencies of vortex state excitations in magnetic submicron-size disks , 2001 .

[28]  Thomas Schrefl,et al.  Micromagnetics simulation of high energy density permanent magnets , 2000 .

[29]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[30]  Werner Scholz,et al.  Domain wall motion in nanowires using moving grids (invited) , 2002 .

[31]  K. Ramstöck,et al.  Corners and nucleation in Micromagnetics , 1998 .

[32]  Caroline A. Ross,et al.  Micromagnetic behavior of electrodeposited cylinder arrays , 2002 .

[33]  Gang Xiao,et al.  The role of electron scattering in magnetization relaxation in thin Ni$_{81}$Fe$_{19}$ films , 2002, cond-mat/0208207.

[34]  Josef Zweck,et al.  Magnetisation reversal of thin submicron elliptical permalloy elements , 2003 .

[35]  Carsten Carstensen,et al.  Coupling of Nonconforming Finite Elements and Boundary Elements II: A Posteriori Estimates and Adaptive Mesh-Refinement , 1999, Computing.

[36]  H. N. Bertram,et al.  Concise, efficient three-dimensional fast multipole method for micromagnetics , 2001 .

[37]  Jian-Gang Zhu,et al.  Micromagnetic Modeling: Theory and Applications in Magnetic Thin Films. , 1995 .

[38]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[39]  George D. Byrne,et al.  PVODE, an ODE Solver for Parallel Computers , 1999, Int. J. High Perform. Comput. Appl..

[40]  J. P. Park,et al.  Imaging of spin dynamics in closure domain and vortex structures , 2002, cond-mat/0208572.

[41]  B. L. Gyorffy,et al.  Exploring dynamical magnetism with time-dependent density-functional theory: From spin fluctuations to Gilbert damping , 2002, cond-mat/0211021.

[42]  Thomas Schrefl,et al.  Finite element micromagnetic simulations with adaptive mesh refinement , 1997 .

[43]  A. Aharoni,et al.  Magnetostatic energy calculations , 1991 .